The Serret-Frenet Triad

Let $\mathbf{x}(s)$ be a curve in E^3 , and suppose that s is an arc-length parameter (i.e., that $\|\frac{d\mathbf{x}}{ds}\| = 1$). At any point on the curve, we define the tangent vector $\mathbf{t} = \frac{d\mathbf{x}}{ds}$, the curvature $\kappa = \|\frac{d\mathbf{t}}{ds}\|$, the normal vector $\mathbf{n} = \frac{1}{\kappa}\frac{d\mathbf{t}}{ds}$, and finally the binormal vector $\mathbf{b} = \mathbf{t} \times \mathbf{n}$. Although plenty of vectors besides \mathbf{t} and \mathbf{n} are geometrically tangent and normal to the curve, our definitions allow us to say "the tangent vector" and "the normal vector" without ambiguity. Notice that \mathbf{t} , \mathbf{n} , and \mathbf{b} are orthonormal. These vectors are referred to as the Serret-Frenet triad.

1 The Serret-Frenet Triad Derivatives

We know that $\frac{d\mathbf{t}}{ds} = \kappa \mathbf{n}$, but how about $\frac{d\mathbf{n}}{ds}$ and $\frac{d\mathbf{t}}{ds}$? Because $\mathbf{n} \cdot \mathbf{n} = 1 \Longrightarrow \frac{d\mathbf{n}}{ds} \cdot \mathbf{n} = 0$, it must be that $\frac{d\mathbf{n}}{ds} = \alpha \mathbf{t} + \beta \mathbf{b}$, where α and β are scalars. Computing $\frac{d\mathbf{b}}{ds}$, we find that $\frac{d\mathbf{b}}{ds} = \frac{d\mathbf{t}}{ds} \times \mathbf{n} + \mathbf{t} \times \frac{d\mathbf{n}}{ds} = -\beta \mathbf{n}$. The common name for β is the *torsion* of the curve, and it is usually denoted by τ . Finally, note that $\alpha = \frac{d\mathbf{n}}{ds} \cdot \mathbf{t} = \frac{d}{ds} (\mathbf{n} \cdot \mathbf{t}) - \mathbf{n} \cdot \frac{d\mathbf{t}}{ds} = -\kappa$. These formulae can be summarized in a single matrix equation:

$$\frac{d}{ds} \begin{bmatrix} \mathbf{t} \\ \mathbf{n} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{n} \\ \mathbf{b} \end{bmatrix}$$
 (1)

Now consider $\mathbf{x} = x_t \mathbf{t} + x_n \mathbf{n} + x_b \mathbf{b}$, which can be expressed as the following formal product

$$\mathbf{x} = \begin{bmatrix} \mathbf{t} & \mathbf{n} & \mathbf{b} \end{bmatrix} \begin{bmatrix} x_t \\ x_n \\ x_b \end{bmatrix}. \tag{2}$$

The column matrix on the right is called the matrix of \mathbf{x} with respect to the Serret-Frenet triad. We obtain the matrix of $\frac{d\mathbf{x}}{ds}$ with respect to the Serret-Frenet triad by differentiating (2), (using the transpose of (1))

$$\frac{d\mathbf{x}}{ds} = \begin{bmatrix} \mathbf{t} & \mathbf{n} & \mathbf{b} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} x_t \\ x_n \\ x_b \end{bmatrix} + \frac{d}{ds} \begin{bmatrix} x_t \\ x_n \\ x_b \end{bmatrix} \end{pmatrix}. \tag{3}$$

The skew-symmetric matrix in (3) corresponds to a cross product as follows

$$\begin{bmatrix} \mathbf{t} & \mathbf{n} & \mathbf{b} \end{bmatrix} \begin{bmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} x_t \\ x_n \\ x_b \end{bmatrix} = (\begin{bmatrix} \mathbf{t} & \mathbf{n} & \mathbf{b} \end{bmatrix} \begin{bmatrix} \tau \\ 0 \\ \kappa \end{bmatrix}) \times (\begin{bmatrix} \mathbf{t} & \mathbf{n} & \mathbf{b} \end{bmatrix} \begin{bmatrix} x_t \\ x_n \\ x_b \end{bmatrix} = \mathbf{x}). \tag{4}$$

It follows that if x_t , x_n , and x_b are s independent (as they are when \mathbf{x} equals \mathbf{t} , \mathbf{n} , or \mathbf{b}), then as s increases, \mathbf{x} spins about the vector $\tau \mathbf{t} + \kappa \mathbf{b}$, at a rate proportional to $\sqrt{\tau^2 + \kappa^2}$. This is totally awesome.

1.1 Non Arc-Length Parameters

We use s to denote arc-length parameters, and t to denote non arc-length parameters, (i.e., those for which $\|\frac{d\mathbf{x}}{dt}\| \neq 1$). Letting $u^{[k]}$ denote $\frac{d^k u}{dt^k}$, and letting p denote $\|\mathbf{x}^{[1]}\|$, we note that

$$p\mathbf{t} = \mathbf{x}^{[1]}, \quad p^2 \kappa \mathbf{n} = \mathbf{x}^{[2]} - \mathbf{t}(\mathbf{t} \cdot \mathbf{x}^{[2]}), \quad \mathbf{b} = \mathbf{t} \times \mathbf{n}, \quad p^2 \kappa \tau = \mathbf{b} \cdot \mathbf{x}^{[3]}$$
 (5)

From these we can compute \mathbf{t} , p, \mathbf{n} , κ , \mathbf{b} , and finally τ . Finding t_2 so that the length of $\mathbf{x}(t)$ from some t_1 to t_2 has a desired value L can be done by using Newton's method on the function $L(t_2)$. Note that

$$L(t_2) = \int_{t_1}^{t_2} p \, dt$$
 and that $\frac{dL}{dt_2} = p$. (6)