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1 Notes on The Partial Fractions Expansion

1.1 Overview

These notes examine the partial fractions expansion in a linear algebra setting. The expansion is justified
for quotients of general complex valued polynomials, and then specialized to quotients of polynomials with
real coefficients.

1.2 The General Setting

Let ¢(s) : C — C be a monic polynomial of degree n with complex coefficients. The fundamental theorem
of algebra guarantees the existance of [ < n distinct complex roots r; such that ¢(s) can be written as
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where n; is the multiplicity of the root r;, and ) n; = n.

1.3 Distinct Roots

We first consider the case where n; = 1 for every i. This causes there to be n distinct roots r;, and
correspondingly n distinct terms (s — r;) in (1). Now consider a polynomial p(s) of degree m < n with
complex coefficients. We question whether or not numbers ¢; € C exist that allow us to represent the
quotient p(s)/q(s) as follows
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We multiply each term ¢; /(s — r;

where J is the set of all integers from 1 to n with the exception of j. This causes (2) to take the form
p(s) _ i ¢jb;(s) 4)
a(s) = a(s)
Therefore our question becomes one of whether or not {b;(s)} spans the space of complex polynomials of
degree m. This will occur if {b;(s)} is a basis of the space of complex polynomials of degree n — 1 (recall
that m < n). The space of complex polynomials of degree n — 1 has dimension n, which is the same as the

number of elements in {b;(s)}, and so the b;(s)’s comprise a basis if they are linearly independent. Suppose
that n numbers a; € C exist so that > a;b;(s) = 0. This sum can be expanded as follows
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where a space emphasizes the missing term in each b;(s). Picking s = ry causes every row except the first
one to be zero (recall that we are considering the case where the roots r; are distinct, and so by (r1) # 0).
The condition Y a;b;(s) then holds only if oy = 0. Continuing in this manner, we find that a; = 0 for every
J, and so the b;(s)’s are linearly independent as desired. It follows that {b;(s)} is a basis of the space of
complex polynomials of degree n — 1, and so ¢; exist which allow the representation (2).



1.4 Repeated Roots

We now turn our attention to the general case, where n; are allowed to be greater than 1. As before, we
will show that the question of the validity of a representation is equivilant to the question of whether or
not some set of polynomials is a basis for all polynomials of a certain degree. A representation of p(s)/q(s)
(where p(s) is still some degree m < m polynomial with complex coefficients) of the form (2) is inadequate
when the roots of ¢(s) are repeated. Instead we try the following representation
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Following our developement for the simple case, each quotient above is multiplied by the convenient form
of unity which causes its denominator to equal ¢(s). If the numerator polynomials resulting from this
multiplication comprise a basis for the space of degree n —1 polynomials, then ¢;; allowing this representation
will be sure to exist. The n numerator polynomials are enumerated as bi(s), where the ¢;; term in (6)
corresponds t0 bp, 4not-tn;_1+5(8) (With ng = 0). That is, the &k in bg(s) is 1 when by(s0 corresponds to
the ¢1; term in (6), and then increases as we move to the right through the first row, and from left to right
through each of the rows that follow (taken in order from the top of (6) to the bottom). We now consider
the implications of the condition a;b;(s) = 0. Writing out this sum explicitly, we find that
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For clarity we raise certain terms to the power 0; keep in mind that these terms have value 1. Setting s = r;
causes every thing except the n; row above to equal zero, and so we see that a,, = 0. Next, note that
(s — 1) can be factored out of every polynomial that remains. Doing this and setting s = r; a second time
causes all rows except the ny —1 row to equal zero. If something that is at most an order & polynomial equals
zero at k + 1 points, then it is the zero function. With this in mind we see that a,,_1 = 0. Continuing in
this fashion, we find that all the a’s are zero. The polynomials b;(s) are therefore linearly independent, and



comprise a basis of the dimension n space of degree n — 1 complex polynomials. As a result, we can be sure
that numbers ¢;; exist which allow the representation (6).

1.5 Real Coefficients

In the previous section, we showed that a convenient partial fractions erpansion exists of the quotient
p(8)/q(s), where g(s) is a polynomial of degree n, and p(s) is a monic complex polynomial of degree m < n.
This result continues to hold when the polynomial coefficients are real, however it is inconvenient when
expressed as (6), because the coefficients ¢;; in this representation will generally be complex, even though
g(s) and p(s) acting on real arguments result in a quotient p(s)/q(s) that is always real valued. In this
section we develop a form of (6) that is suited to the case where p(s) and ¢(s) have real coefficients, and
where the argument s is also real.

If ¢(s) has real coefficients, then its roots r are real, or occur in complex conjugate pairs. This means
that if r is a complex root of ¢(s) with multiplicity 7i, then its conjugate 7 is also a root of ¢(s) with mul-
tiplicity 7. Note that because the quotient Q(s) = p(s)/q(s) is real when s is real, the reflection principle
guarantees that Q(3) = Q(s). Focusing on rows 7 and j of (6), which we suppose are the rows corresponding
to r and 7, we find that

N _ Ca Ci2 Cit
) =+ G T T o

Gt %2 e
T (§—f)2Jr * (5 —r)n

+ other rows

) =37 (5—77)2+ +(§—f)ﬁ
ot r__ ..y _Gn
AT P R FRS T
+ other rows (8)

Matching terms (as we must if s is free to vary), we find that ¢;; = €. With this in mind, we combine
corresponding terms of Q(s) as follows
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where o? < 483, and where we have replaced s with the real variable z. We denote the numerator p,(z)
because it is a real n*"-degree polynomial in . Construction (9) allows us to combine the two rows of Q(z)
that are due to r into a single row as follows
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The terms in this condensed row can be combined to form a single quotient, with (z? + az + 3)" in the
denominator, and some degree 7 polynomial in the numerator. This single quotient can be expressed as
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This is easy to see: simply return (11) to its single quotient form by multiplying each term by a convenient
form of unity. Then a;; will be the coefficient of a degree 27 polynomial, b;; will be the coefficient of a
degree 27, — 1 polynomial, and so on, with a;; the coefficient of a degree 1 polynomial (that is of z), and
with b;; a constant. Clearly values of these coefficients exist that cause the numerator of the single quotient
form of (11) to equal any degree 7 polynomial, and so (11) is indeed valid. This completes our adaptation



of the partial fractions expansion to quotients of real valued polynomials. The adaptation to real coeflicients
is correct, but not at all elegent. I had hoped to find an expression for the coefficients a;; and b;; in (11)
in terms of the real and imaginary parts of the initial expansion coefficients. My first investigations suggest
that these expressions are not at all nice, and consist of large sums. A cleaner developement can probably
be had by specializing to the reals earlier on.

1.6 Observations
The partial fractions expansion is unique, as is the expression of any vector with respect to a basis of its
resident vector space.

1.7 Polynomial Representations

The following is a neat expression for the polynomial that is generated by multiplying n terms of the form
(x + A;) together
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More explicitly,
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where A;) is the sum of all unique j-tuple products of A;, each of which can include a particular A; at most
once, and where Ag) = 1). As an example,
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