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Abstract

A Geometric Characterization of Solutions to

The Algebraic Riccati Equation

by

Patrick Kessler

Master of Arts in Mathematics

University of California, Berkeley

Maciej Zworski, Chair

In this thesis we use the geometry of Lagrangian subspaces and symplectic forms to

describe solutions of the Algebraic Riccati Equation. This equation is largely moti-

vated by the Linear Quadratic Regulation problem from control theory, which arises

in applied settings where work often progresses by use of concrete row and column

operations. Although these operations have been used to generate useful existence

and uniqueness results for particular solutions to Algebraic Riccati Equations, our

goal in this thesis is a general aesthetic characterization of all the Algebraic Riccati

Equation solutions, and to this end we employ the language of symplectic geometry.

Maciej Zworski
Thesis Committee Chair
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Chapter 1

Introduction

The Algebraic Riccati Equation (ARE) is the following matrix equation for the

n × n self-adjoint matrix P

A∗P + PA + PDP + C = 0, (1.1)

where A, C, and D are n × n matrices (in R or C), with C = C∗ and D = D∗.

Generally, the question of solution existence and uniqueness is nontrivial. For in-

stance, in the case of 1 × 1 matrices, (1.1) becomes the familiar quadratic equation

dp2 +2ap+c = 0, which may have distinct solutions, a unique solution, or no solution

(when d, a, c and p are real). Although our interest is in the self-adjoint solutions of

(1.1), non self-adjoint solutions to (1.1) may also exist, for instance

P =

⎡
⎢⎣0 1

0 0

⎤
⎥⎦ solves (1.1) with A =

⎡
⎢⎣a 0

0 −a

⎤
⎥⎦ , D =

⎡
⎢⎣0 0

0 0

⎤
⎥⎦ , and C =

⎡
⎢⎣0 0

0 0

⎤
⎥⎦ .

(1.2)

In the case of non self-adjoint solutions, we note that if P solves (1.1) then so does

its adjoint P ∗.

Research on the ARE and its variants has been extremely active for over half
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a century, see (7) for references. Our work begins in Chapter 2 with a description

of the Linear Quadratic Regulation (LQR) problem from control theory, which is

one of the principle motivations for the ARE. In this context there are well-known

results on the existence and uniqueness of certain ARE solutions. Essentially, the

optimal control for any reasonable physical system corresponds to the solution of an

ARE which exists, is unique, and can be computed easily using a variety of methods.

Equation (1.1) however is much deeper than this particular application. Our main

goal in this project is to describe solutions of (1.1) using the geometry of Lagrangian

subspaces and symplectic forms. The connection between ARE solutions and La-

grangian subspaces is well known (see (5) and references given there). The geometric

characterization of the ARE solutions that we present is related to the classical work

on the symplectic classification of quadratic forms- see (6, §21.5) and references given

there. We undertake our main task in Chapter 3, where we characterize the real

symmetric solutions of (1.1) in the case where A, C, and D are real. As part of this

characterization, we obtain sufficient conditions for the existence of these solutions.

Core objects in Chapter 3 are established using the natural and aesthetic language of

dual spaces. This material is unfamiliar to many engineers, and so in Chapter 4 we

establish these core objects using familiar but less elegant tools like inner products.

In low enough dimensions, this development can be visualized, as we show in Section

4.1. After showing in Chapter 5 that our geometric characterization from Chapter

3 leads to a method of computing ARE solutions in Matlab, we end in Chapter 6

with concluding remarks and a discussion of ways in which the current work can be

extended.

A substantial portion of our work is contained in the Appendices. In Appendix

A, we derive conditions that must be satisfied by a solution to the LQR problem. In

Appendix B we define terms used in Chapters 2 and 3, and we discuss several uses
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of the word adjoint. In Appendix C, we prove the many assertions from Chapter 3,

and in Appendix D, we discuss real objects in vector spaces over C, as well as the

complexification of vector spaces over R.
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Chapter 2

Linear Quadratic Regulation

In this chapter we describe the Linear Quadratic Regulation (LQR) problem and

its connection to the ARE. The LQR problem is to find a control function u(t) for

the system

ẋ = Ax + Bu, x(0) = x0 (2.1)

which minimizes the cost function

J =

∫ T

0

(xTQx + uTRu)dt + x̂T Q̂x̂, (2.2)

where Q = QT ≥ 0, Q̂ = Q̂T ≥ 0, and R = RT > 0, (and where x̂ denotes x(T )). We

refer to a u(t) that minimizes J as optimal. The matrices Q and R penalize nonzero

state values x(t) and control values u(t) respectively for t ∈ [0, T ], while the matrix

Q̂ penalizes nonzero state values x̂ at the final time T .

In Appendix A, we show that if a smooth u(t) minimizes J , then it satisfies

u(t) = −R−1BTP (t)x(t), (2.3)

where P (t) = P T (t) ≥ 0 satisfies what we will call the Riccati initial value problem,
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consisting of the differential equation

−Ṗ = ATP + PA − PBR−1BTP + Q, (2.4)

and the starting condition P (T ) = Q̂, with integration backwards in time, from T to

t < T . The LQR problem therefore is associated with the ARE given by

0 = ATP + PA − PBR−1BTP + Q. (2.5)

We note that solutions of (2.5) are fixed points in the flow induced by (2.4). Collecting

results from the excellent book (7) by Lancaster and Rodman, we obtain the following

Theorem 2.0.1 The Riccati initial value problem with Q̂ = 0 has a well-defined

solution for every t < T . If (A,B) is stabilizable1, then P (t) −→ P as T −→
∞, where P is a positive semi-definite solution of (2.5). If in addition (Q,A) is

observable, then this P is positive definite, and is the only matrix which satisfies

(2.5) among all positive semi-definite matrices.

The positive definite P in Theorem 2.0.1 is particularly important because it plays

a role in the infinite horizon LQR problem, in which the cost function is given by

J∞ =

∫ ∞

0

(xTQx + uTRu)dt. (2.6)

If all the hypotheses of Theorem 2.0.1 are satisfied, then the infinite horizon problem

and its solution can be obtained from the finite time problem by taking the limit as

T −→ ∞. In particular, because P (t) at any fixed time t approaches the constant

positive definite P from Theorem 2.0.1, the optimal u at this fixed time must satisfy

u(t) = −R−1BTPx(t). (2.7)

The corresponding minimum value of J∞ is given by xT
0Px0. Also, we note that

using (2.7) as a feedback rule for u(t) in ẋ = Ax + Bu causes the closed loop system

1The term stabilizable is defined along with its relatives in Appendix B.1.
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ẋ = (A − BR−1BTP )x to be stable, (i.e., the eigenvalues of A − BR−1BTP are in the

open left half plane).

In addition to an existence and uniqueness result for solutions to the ARE given

in (2.5), the LQR problem suggests a practical way of computing solutions; simply

start at 0 and integrate (2.4) until P (t) stops changing. With this in mind, we note

that with Y = PX, the nonlinear (2.4) has the following linear equivalent

d

dt

⎡
⎢⎣X

Y

⎤
⎥⎦ =

⎡
⎢⎣ A −BR−1BT

−Q −AT

⎤
⎥⎦

⎡
⎢⎣X

Y

⎤
⎥⎦ (2.8)

2.1 The One Dimensional Setting

Here we illustrate the LQR solution and some of its possible degeneracies in the

easy to understand one dimensional setting. To emphasize that that all objects are

now scalars, we write (2.1) as

ẋ = ax + bu, x(0) = x0, (2.9)

and we write J as

J =

∫ T

0

(qx2 + ru2)dt + q̂x̂2, (2.10)

where x̂ = x(T ). From Appendix A we know that if a smooth optimal u(t) exists,

then it must satisfy

u(t) = − b

r
p(t)x(t), (2.11)

where p(t) satisfies the Riccati initial value problem given by p(T ) = q̂, and the

differential equation

−ṗ = q + 2ap − b2

r
p2 =: f(p). (2.12)

Our ultimate interest is in the fixed points of the flow induced by (2.12), as these

are the solutions of the ARE given by f(p) = 0. This flow can be visualized by
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plotting f(p) as in Figure 2.1. We note that when there are no fixed points (i.e.,

when ra2 + 4qb2 < 0), every trajectory that satisfies (2.12) experiences a finite time

singularity. If the trajectory through p(T ) = q̂ experiences its singularity over the

interval on which an optimal control is desired, then of course this optimal control is

an impossibility.

q + a2r
b2

p1
ar
b2

p2

dd
f(p)

p

d = r
b2

√
a2 + qb2

r
≥ ar

b2

Figure 2.1. Here we graph the function f(p) which governs the evolution of p(t)
according to −ṗ = f(p). As t decreases, points p on the x-axis move as indicated by
the large black arrows. We consider here the case b �= 0, r > 0, and q ≥ 0.

When the conditions q ≥ 0 and r > 0 given with the LQR problem are satisfied,

the first segment of Theorem 2.0.1 assures us that the solution p(t) to the Riccati

initial value problem with q̂ = 0 is well-defined for all t < T . The second segment of

Theorem 2.0.1 guarantees that the finite limit of p(t) is nonnegative if the pair (a, b)

is stabilizable. In one dimension, the pair (a, b) is stabilizable if and only if either

b �= 0 (i.e., we can control x), or a < 0 (i.e., x goes to 0 on its own). By examining

plots of f(p), it is easy to verify that these conditions cause (2.12) to have a stable

nonnegative fixed point. The third segment of Theorem 2.0.1 requires the pair (q, a)

to be observable; in one dimension this occurs if and only if q �= 0.

In the LQR problem, q and q̂ are nonnegative and r is positive. As an example of

what can happen without these restrictions, note that when q = 0, q̂ = 0, and r < 0,
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the resulting set of possible J values is not bounded below, (consider for instance the

family of control functions {uk(t)}∞k=1 where uk(t) = k for all t). Difficulties can also

arise when r = 0. For instance with q = 1, q̂ = 0, r = 0, and x0 = 1, the resulting

set of possible J values is given by (0,∞). This set is bounded below, but it has no

minimum and so no optimal u(t) exists.
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Chapter 3

A Geometric Characterization

In this chapter, we consider Algebraic Riccati Equations (1.1) in which the ma-

trices A, C, and D are real,

ATP + PA + PCP + D = 0, A, C,D ∈ R
n×n, C = CT , D = DT . (3.1)

The solution matrices P can be either real or complex; our interest here is with

matrices P = P T that are real. Our first step is to move from matrices to mappings

on abstract vector spaces. Let V be an n-dimensional vector space over C, and let

V ′ be its dual1. With respect to a basis {ei} on V and its dual basis {e′i} on V ′, the

matrices in (3.1) define the following mappings

A : V −→ V, C : V ′ −→ V, D : V −→ V ′, and P : V −→ V ′. (3.2)

We use {ei} and {e′i} to define real vectors on V and V ′ respectively (see Appendix

D), and so the mappings in (3.2) are real. The same symbol denotes a matrix and its

associated mapping, with the meaning of a symbol always clear from its context. As

we discuss in Appendix B.3, the matrix corresponding to the natural adjoint P ′ of the

1As discussed in Chapter 4, the following development works just as well (but with less elegance)
if V ′ is replaced by V , and if the natural pairing between vectors and functionals is replaced by an
inner product on V .
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mapping P : V −→ V ′ is the transpose (no conjugate) of the matrix corresponding to

P , even when the matrix entries are complex. The natural adjoints of the mappings

in (3.2) are given by

A′ : V ′ −→ V ′ such that 〈A′ξ, x〉
V

= 〈ξ, Ax〉
V

for all x ∈ V, ξ ∈ V ′,

C ′ : V ′ −→ V such that 〈ξ, C ′η〉
V

= 〈η, Cξ〉
V

for all ξ, η ∈ V ′,

D′ : V −→ V ′ such that 〈D′x, y〉
V

= 〈Dy, x〉
V

for all x, y ∈ V,

P ′ : V −→ V ′ such that 〈P ′x, y〉
V

= 〈Py, x〉
V

for all x, y ∈ V,

(3.3)

where 〈ξ, x〉
V

denotes ξ(x), with ξ ∈ V ′ and x ∈ V . We define a new vector space

W = V ⊕ V ′, with elements written as [x ξ]T , where x ∈ V and ξ ∈ V ′, and we use

the union of real bases on V and V ′ to define real vectors on W . We turn W into a

symplectic vector space by pairing it with a symplectic bilinear form σ on W , given

by

σ(

⎡
⎢⎣x

ξ

⎤
⎥⎦ ,

⎡
⎢⎣y

η

⎤
⎥⎦) = 〈ξ, y〉

V
− 〈η, x〉

V
. (3.4)

The basic properties of σ are

σ(X,Y ) = −σ(Y,X), and σ(X,Y ) = 0 ∀Y ∈ W =⇒ X = 0, (3.5)

and in fact we show in C.0.1 that any symplectic bilinear form on an even dimensional

vector space can be expressed as (3.4). Let Q(X,Y ) be the following symmetric

bilinear form on W

Q(

⎡
⎢⎣x

ξ

⎤
⎥⎦ ,

⎡
⎢⎣y

η

⎤
⎥⎦) = 〈Dx, y〉

V
+ 〈η,Ax〉

V
+ 〈ξ, Ay〉

V
+ 〈η, Cξ〉

V
. (3.6)

We now show that matrix solutions P = P T of (3.1) correspond to Lagrangian graph

subspaces of W over which Q = 0.

• A subspace Λ ⊂ W is called Lagrangian if it is equal to its symplectic comple-

ment (given by the set of vectors in W that are σ-orthogonal to Λ).
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• A subspace Λ ⊂ W is called a graph space if it can be written as

Λ = {

⎡
⎢⎣ x

Px

⎤
⎥⎦ : x ∈ V }, (3.7)

where P ∈ L(V ′, V ). With π : W −→ V the natural projection defined by

π([x y]T ) = x, we show in C.0.2 that Λ ⊂ W can be written as (3.7) if and only

if π|Λ is a bijection.

In C.0.3, we show that the graph space Λ ⊂ W is Lagrangian if and only if P from

the graph space representation is equal to its natural adjoint. Now suppose that Q

vanishes identically on a Lagrangian graph subspace of W . Then, using (3.6),

0 = Q(

⎡
⎢⎣ x

Px

⎤
⎥⎦ ,

⎡
⎢⎣ y

Py

⎤
⎥⎦) = 〈Dx, y〉

V
+ 〈Py,Ax〉

V
+ 〈Px,Ay〉

V
+ 〈Py,CPx〉

V

= 〈(PA + A′P + D + PCP )x, y〉
V
, (3.8)

for all x, y ∈ V , and so (3.1) holds2. Conversely, if P = P T is a solution to (3.1), then

it corresponds to a Lagrangian graph subspace of W over which Q vanishes. These

findings are illustrated in Figure 3.1.

At this point we have characterized the symmetric matrix solutions of (3.1). To

characterize the real symmetric matrix solutions of (3.1), we must consider the struc-

ture of W in further detail. Let q(X) = Q(X,X) be the quadratic form associated

with Q,

q(

⎡
⎢⎣x

ξ

⎤
⎥⎦) = 〈Dx, x〉

V
+ 〈ξ, Ax〉

V
+ 〈ξ, Ax〉

V
+ 〈ξ, Cξ〉

V
. (3.9)

2In detail, x in (3.8)2 is acted on by a linear map from V to V ′, which we have argued is equal to
zero. The corresponding equation in matrices is (3.1), and so the matrix corresponding to the map
P satisfies the ARE. Because P = P ′, the matrix is equal to its transpose.
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W = V ⊕ V ′
Λ is Lagrangian:
·Λ⊥ = Λ
·dim Λ = 1

2 dim W

Q = 0

Λ is a Graph Space:
·Λ = {[x Px]T |x∈V }

�
π|Λ is a bijection

ARE Solutions

P = P ′

Figure 3.1. This diagram summarizes the subspaces of W that we use to characterize
solutions to (3.1). Graph subspaces are Lagrangian if and only if P = P ′. Lagrangian
graph subspaces on which Q = 0 correspond to the desired solutions.

The Hamiltonian3 F of q is a real operator on W defined by

F =
1

2

⎡
⎢⎣p′′ξx p′′ξξ

p′′xx p′′xξ

⎤
⎥⎦ =

⎡
⎢⎣ A C

−D −A′

⎤
⎥⎦ . (3.10)

In C.0.4 we show that F can also be defined by the following (coordinate invariant)

equation,

σ(X,FY ) = Q(X,Y ), X, Y ∈ W. (3.11)

It follows (see C.0.7) that a Lagrangian subspace on which Q vanishes is equivalent to

one which is invariant under F , and that solutions to (3.1) correspond to F -invariant

Lagrangian graph subspaces of W . We let Vλ ⊂ W denote the space of generalized

eigenvectors of F belonging to the eigenvalue λ ∈ Spec(F ). In C.0.8, we establish

that

λ1 + λ2 �= 0 =⇒ σ(Vλ1 , Vλ2) = 0, (3.12)

from which it follows (see C.0.9) that

λ ∈ Spec(F ) =⇒ −λ, λ̄,−λ̄ ∈ Spec(F ), (3.13)

3An alternate terminology is to call q the Hamiltonian of the vector field F on W .

12



and also (see C.0.10) that for λ �= 0, Vλ is the dual space of V−λ according to

Vλ

α� V ′
−λ, α(X)(Y ) = σ(X,Y ), X ∈ Vλ, Y ∈ V−λ. (3.14)

It follows (see C.0.11) that Vλ ⊕ V−λ is a symplectic vector space, and (see C.0.13)

that V0 is symplectic as well.

In C.0.15, we show that a Lagrangian subspace Λ ⊂ W is invariant under F if

and only if

Λ =

(⊕
λ∈Σ

Λλ

)
⊕ Λ0, (3.15)

where each Λλ is an F -invariant Lagrangian subspace of Vλ ⊕ V−λ, where Λ0 is an

F -invariant Lagrangian subspace of V0, and where Σ is some set satisfying Σ∪(−Σ) =

Spec(F )\{0} and Σ ∩ (−Σ) = ∅. The set Σ causes (3.15) to include an F -invariant

Lagrangian subspace of each Vλ⊕V−λ, (we note that Vλ⊕V−λ is the same as V−λ⊕Vλ).

It is the specification of these subspaces that affects the resulting Λ.

We now consider the special case in which

Spec(F ) ∩ iR = ∅. (3.16)

Let λ1, . . . , λm be the real eigenvalues of F with positive real parts, and let μ1, . . . , μn

be the eigenvalues of F in the first quadrant of C, (i.e., with positive real and imagi-

nary parts). Note that W can be decomposed as the direct sum of W1, W2, and W3,

where

W1 =
m⊕

i=1

(Vλi
⊕ V−λi

), W2 =
n⊕

i=1

(Vμi
⊕ V−μi

), W3 =
n⊕

i=1

(Vμ̄i
⊕ V−μ̄i

). (3.17)

To construct Λ as in (3.15), we need to choose F -invariant Lagrangian subspaces of

the terms in parenthesis. Two obvious such subspaces of Vα⊕V−α (with α equal to λi,

μi, or μ̄i) are Vα and V−α (see C.0.16 for details). The possible combinations of these

13



subspaces give 2m+2n different F -invariant Lagrangian subspaces Λ of W . Several of

these lead to the desired real solutions of (3.1). In particular, if we choose Vμi
and

Vμ̄i
(or V−μi

and V−μ̄i
) as the subspaces of Vμi

⊕V−μi
and Vμ̄i

⊕V−μ̄i
respectively, then

when these are combined in the direct sum (3.15), the resulting space is spanned by

real vectors in W (see C.0.17). Of course, V±λi
is spanned by real vectors as well. It

follows that Λ is a real F -invariant Lagrangian subspace of W .

In order for the F -invariant Lagrangian Λ to correspond to a symmetric matrix

solution of (3.1), Λ must also be a graph space. We now claim that π|Λ is a bijection

(recall that this implies Λ is a graph space) if 〈ξ, Cξ〉
V

is non-degenerate, (i.e., if

〈ξ, Cξ〉
V

only if ξ = 0). The domain Λ and target space V of π|Λ have the same

dimension, and so bijectivity is equivalent to injectivity. We establish injectivity by

showing that ker(π|Λ) = {[0 0]T}. If [x ξ]T ∈ Λ gets mapped to 0 by π|Λ, then clearly

x = 0. Next, because the F -invariance of Λ is equivalent to the vanishing of Q (and

hence q) on Λ, we have

q(

⎡
⎢⎣0

ξ

⎤
⎥⎦) = 〈ξ, Cξ〉

V
= 0. (3.18)

But 〈ξ, Cξ〉
V

is non-degenerate and so ξ = 0 as desired. Thus the F -invariant La-

grangian Λ is a graph space as desired, and can be written as Λ = {[v Pv]T |v ∈ V }.
The mapping P in this representation satisfies P = P ′, and the associated symmetric

matrix solves (3.1).

We now argue that the map P : V −→ V ′ found above is real. It then follows that

the matrix of P with respect to the bases {ei} and {e′i} (introduced at the begining of

this chapter) consists of real numbers. Real vectors in W = V ⊕ V ′ are combinations

14



over R of the following real basis on W

{

⎡
⎢⎣e1

0

⎤
⎥⎦ ,

⎡
⎢⎣e2

0

⎤
⎥⎦ , . . . ,

⎡
⎢⎣en

0

⎤
⎥⎦ ,

⎡
⎢⎣ 0

e′1

⎤
⎥⎦ ,

⎡
⎢⎣ 0

e′2

⎤
⎥⎦ , . . . ,

⎡
⎢⎣ 0

e′n

⎤
⎥⎦}. (3.19)

We showed that Λ is spanned over C by real vectors in W , and so it follows that Λ

has a real basis {[bi ci]
T}, each element of which is an R combination of the elements

in (3.19). We also showed that

Λ = {

⎡
⎢⎣ v

Pv

⎤
⎥⎦ |v ∈ V }, (3.20)

and so it must be that the C-span of the bi’s is V , (in (3.20) we can pick v to be any

element of V ). Pick any real u ∈ V , that is, pick u =
∑

γibi where every γi is real.

Note that
∑

γi[bi ci]
T is in Λ. We know from (3.20) that every element of Λ is given

by [v Pv]T where v ∈ V , and so it must be that Pu =
∑

γici, which is a real vector

in V ′. Thus P is a real map as desired.
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Chapter 4

An Alternative Development

Here we consider an alternative method of establishing the core objects W , σ,

and Q from Chapter 3. Rather than have V ′ be the dual of V , we set V ′ equal to V ,

so that W becomes V ⊕ V . In this context, 〈•, •〉
V

now stands for an inner product

on V , instead of a pairing between functionals and vectors. This inner product is an

addition to the discourse beyond what is needed using the natural development from

Chapter 3, however this aesthetic disadvantage is balanced by the benefit of working

on familiar ground (engineers are generally more at home with inner products than

with dual spaces). Because the matrices in (3.1) are real, the formal development

from the first part of Chapter 3 is unaffected by this change. We now undertake this

approach in one dimension, where the resulting constructions are easy to visualize.

Spatial intuition in this simple case is a valuable guide for similar constructions in

higher dimensions.
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4.1 A One Dimensional Example

Here we consider the simple but nontrivial one dimensional ARE, which is the

following scalar quadratic equation in x

cx2 + 2ax + d = 0. (4.1)

The low dimensionality of this equation makes it possible to visualize the associated

geometric constructions from Chapter 3, for instance V is simply R and W = V ⊕ V

is simply R
2. With an inner product on V = R given by scalar multiplication, the

symplectic bilinear form σ on W defined by (3.4) becomes

σ(

⎡
⎢⎣x1

x2

⎤
⎥⎦ ,

⎡
⎢⎣y1

y2

⎤
⎥⎦) = x2y1 − y2x1 = det(

⎡
⎢⎣y1 x1

y2 x2

⎤
⎥⎦). (4.2)

Therefore σ(u, v) returns the (signed) area of the parallelogram associated with u and

v.

Figure 4.1. The symplectic bilinear form σ returns the (signed) area of the parallelo-
gram associated with its input vectors, and the Lagrangian subspaces of W = R

2 are
lines in R

2 through the origin.

A Lagrangian subspace Λ of W = R
2 must satisfy dim Λ = 1

2
dim W = 1 (which

requires Λ to be a line through the origin). The additional requirement that every

vector in Λ be σ-orthogonal to every other vector in Λ is trivially satisfied in this
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case; if u and v correspond to points on a line through the origin, then σ(u, v) = 0

because the parallelogram associated with u and v has zero area.

Graph subspaces of W = R
2 can be written as {[α xα]T |α ∈ R}, and therefore

consist of non-vertical lines through the origin. We have already established that

lines through the origin correspond to the Lagrangian subspaces of W , and so the

Lagrangian graph subspaces of W are simply the graph subspaces of W .

The major geometric characterization from Chapter 3 is that ARE solutions cor-

respond to Lagrangian graph subspaces of W on which the symmetric bilinear form

Q vanishes. In our one dimensional example, Q is given by

Q(

⎡
⎢⎣x1

x2

⎤
⎥⎦ ,

⎡
⎢⎣y1

y2

⎤
⎥⎦) =

[
x1 x2

]⎡
⎢⎣d a

a c

⎤
⎥⎦

⎡
⎢⎣y1

y2

⎤
⎥⎦ (4.3)

Lagrangian graph subspaces in our problem are non-vertical lines through the origin,

and so our interest is in Q restricted to these lines. In particular, we are interested

in finding vectors u = [x1 x2]
T with x1 �= 0 such that Q(αu, βu) = αβQ(u, u) = 0

for all α, β ∈ R. Note that Q(u, u) defines the quadratic form q(u), which can be

visualized (see Figure 4.2) as a surface above W = R
2. The claim in Chapter 3 is

that solutions to the quadratic equation correspond to non-vertical lines through the

origin along which q equals zero. The set in W over which q = 0 is simply the level

set of q which includes the origin, (see Figure 4.2 for an example of these level sets

and their corresponding surfaces). This correspondence is easy to verify analytically;

any non-vertical line in W can be written as the span of a vector of the form [1 x]T ,

and

q(

⎡
⎢⎣1

x

⎤
⎥⎦) = 0 ←→ cx2 + 2ax + d = 0. (4.4)
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Figure 4.2. Here we illustrate three possible types of quadratic form p as surfaces
above W . Each surface is accompanied by its corresponding level set. Non-vertical
lines in the level set which includes the origin correspond to real solutions of (4.1).
In the left most image there are no real solutions, in the middle image there is one
real solution, and in the image at right there are two real solutions.

19



Chapter 5

Computing Solutions

Here we demonstrate the development in Chapter 3 by constructing solutions to

an ARE in Matlab. Suppose our interest is with solutions to (3.1), where A, C, and

D are given by

A =

⎡
⎢⎣1 2

3 4

⎤
⎥⎦ , C =

⎡
⎢⎣2 0

0 1

⎤
⎥⎦ , D =

⎡
⎢⎣1 2

2 1

⎤
⎥⎦ . (5.1)

We start by entering these arrays into Matlab, and by concatenating them to create

F

A=[1 2;3 4];

C=[2 0;0 1];

D=[1 2;2 1];

F=[A C;-D -A’];

Next we find the eigenvalues and eigenvectors of F

[evecs,evals]=eig(F);

evals=diag(evals);
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There are four distinct real eigenvalues and corresponding eigenvectors. Following

the development from the last paragraph in Chapter 3, the span of any two of the

eigenvectors is F -invariant Lagrangian subspace Λ (and thus a prospective ARE so-

lution). In Matlab, these two eigenvectors are 4 × 1 arrays, and stacking them next

to one another gives a 4 × 2 array [X;Y], where X and Y are 2 × 2 arrays. The ARE

solution is the array P for which PX=Y. Matlab commands for constructing P in this

way, and for testing that it satisfies the ARE are

L=evecs(:,[1 4]);

P=L(3:4,:)/L(1:2,:)

Error=A’*P+P’*A+P’*C*P+D

P =

0.61431613579618 -0.54712432051509

-0.54712432051509 0.07305870788308

Error =

1.0e-14 *

-0.04440892098501 -0.13322676295502

-0.13322676295502 0.11102230246252

It follows that the computed solution P satisfies the ARE to numerical precision. Try-

ing the other three possible eigenvector combinations gives three additional solutions,

all of which also satisfy the ARE to numerical precision:

P =

-0.70796721149692 -0.09939673897232

-0.09939673897232 -0.07854267746637

P =

-2.46072866126682 -3.90060326102768
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-3.90060326102768 -3.58406557700616

P =

-2.53652935394154 -3.45287567948491

-3.45287567948491 -6.22863227159236

Note that only the first of our four solutions is positive definite.
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Chapter 6

Additional Questions

We conclude our geometric characterization of the ARE solutions set with a host

of interesting questions that require further investigation. The ARE (1.1) is a special

case of the Algebraic Riccati Inequality,

A∗P + PA + PDP + C ≥ 0, (6.1)

and so it would be interesting to use the geometry of Lagrangian subspaces and

symplectic forms to consider the matrices P that satisfy (6.1). To this end, An-

drew Packard has suggested consideration of the papers by Gohberg, Lancaster, and

Rodman.

Alan Weinstein has suggested that the non-graph F -invariant Lagrangian sub-

spaces of W may correspond to something interesting in the context of AREs. Doubt-

less this is so, however we leave an investigation of this idea for another thesis.

Although in Chapter 3 we did obtain a sufficient condition for the existence of

real symmetric solutions to (3.1), (i.e., Spec(F )∩ iR = ∅ and 〈ξ, Cξ〉
V

= 0 =⇒ ξ = 0),

we did not prove the existence and uniqueness results from LQR theory. Such a proof
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would begin with the translation of conditions such as controllability and observability

into the language of symplectic forms used in Chapter 3.

A final tantalizing challenge is given by the characterization of basin boundaries

for the flow associated with the Riccati differential equation. In the one dimensional

case pictured in Figure 2.1, the positive ARE solution attracts initial conditions on

the interval (p1,∞), where p1 is a negative ARE solution. In higher dimensions, the

basin boundaries are doubtless beautiful and intriguing.
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Appendix A

LQR Optimality Conditions

Given ẋ = Ax + Bu with x ∈ R
m and u ∈ R

n, and an arbitrary initial condition

x(0) = z, we wish to find a control signal u(t) which minimizes the cost function

J =

∫ T

0

(xTQx + uTRu)dt + x̂T Q̂x̂, (A.1)

where x̂ = x(T ). Let {t0, t1, t2, . . . , tN} be a collection of N + 1 evenly spaced points

on [0, T ], (with h = T/N and tk = kh). If u : [0, t] −→ R
m is a smooth1 control

signal, then the collection of state vectors {x0, x1, . . . , xN} established by

xk+1 = xk + h(Axk + Bu(tk)) (A.2)

with x0 = z satisfies max |xk − x(tk)| −→ 0 as N −→ ∞, where x(t) is the solution

to the continuous problem. Equivalently, these state vectors can be defined by the

1We require u to be smooth because this causes the LQR problem to give rise to the ARE, which
is our main interest in this work. We note however that it is entirely possible for u to be chosen
from a less restricted class of functions. Many optimal control problems are solved by “bang-bang”
control strategies that consist of impulses, (see for instance the problem of moving a space craft
from one orbit to another with a minimum of fuel).

27



matrix equation⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...

xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hB

AhB hB

A2hB AhB hB

...
...

...
. . .

AN−1hB AN−2hB AN−3hB . . . hB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(t0)

u(t1)

u(t2)

...

u(tN−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z

Az

A2z

...

AN−1z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.3)

where A = (I + hA). We abbreviate this equation as X = AU + Z. The cost

function J defined in (A.1) can be approximated arbitrarily well as N gets big by

J̃ = XTQX + UTRU, where

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hQ

hQ

. . .

hQ

hQ + Q̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hR

hR

. . .

hR

hR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.4)

Having described the effect of a continuous control signal on the given system in the

discrete setting, we now consider minimizing J . Our strategy is to find a U which

minimizes J̃ (for each N), and then to take the limit as N −→ ∞. Substituting

X = AU + Z into the expression for J̃ , and differentiating with respect to the

components of U, we find that

∂J̃

∂U
= 0 ⇐⇒ U = −R−1ATQX. (A.5)

In matrix form, this necessary condition for the minimization of J̃ can be written as
2
666666666666666664

u(t0)

u(t1)

u(t2)

.

.

.

u(tN−3)

u(tN−2)

u(tN−1)

3
777777777777777775

= −R−1BT

2
666666666666666664

hQ AT hQ (AT )2hQ · · · (AT )N−2hQ (AT )N−1(hQ + Q̂)

hQ AT hQ · · · (AT )N−3hQ (AT )N−2(hQ + Q̂)

hQ · · · (AT )N−4hQ (AT )N−3(hQ + Q̂)

. . .
.
.
.

.

.

.

AT hQ (AT )2(hQ + Q̂)

hQ AT (hQ + Q̂)

hQ + Q̂

3
777777777777777775

2
666666666666666664

x1

x2

x3

.

.

.

xN−2

xN−1

xN

3
777777777777777775

. (A.6)
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Because the xi’s are related by (A.2), we now see that condition (A.6) can be written

as the difference equation

u(tk−1) = −R−1BTPkxk. (A.7)

A sequence of matrices {Pk} which makes (A.7) equivalent to (A.6) as desired can

be obtained by substituting (A.7) into (A.6). From the last row of (A.6), we obtain

PN = Q̂ + hQ, and from the other rows, in combination with (A.2), we obtain

Pk =(I + hAT )Pk+1(I + hBR−1BTPk+1)
−1(I + hA) + hQ

=Pk+1 + h(Q + ATPk+1 + Pk+1A − Pk+1BR−1BTPk+1) + O(h2). (A.8)

for k = 1, 2, . . . , N − 1. From the first equality, it follows that if R = RT , then

Pk+1 = P T
k+1 implies Pk = P T

k , and so if Q and Q̂ are symmetric, then Pk = P T
k for all

k. Assuming this symmetry in R, Q, and Q̂, we note that in the limit as N −→ ∞,

(A.8) becomes the following Riccati differential equation for the symmetric matrix

P (t),

−Ṗ = Q + ATP + PA − PBR−1BTP, (A.9)

and PN = Q̂+hQ becomes the final condition P (T ) = Q̂; P (t) is found by integrating

(A.9) backwards in time from T to t < T . Also as N −→ ∞, (A.7) becomes the

following condition on u(t),

u(t) = −R−1BTP (t)x(t) (A.10)

Although we derived (A.10) as a necessary condition on a control signal u(t) that

minimizes J , this condition obviously (and amazingly) comprises a feedback control

law that can be used to compute u(t) as the system evolves. We note that this law is

independent of the initial sate z. Also, P (t) in (A.10) is independent of x(t), and so

it can be computed ahead of time, so as to provide via feedback the optimal control

signal u(t) at any time, and for any system state x(t).
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A.1 Causality in the Discrete Setting

The transition from a necessary condition to a feedback control law is more in-

volved in the discrete case. Because of (A.2), u(tk) can only affect xl with l > k,

(this is apparent in (A.6) and (A.7)). A control law however needs to return uk given

nothing further advanced in time than xk. We can get around this causal barrier by

combining (A.2) with (A.7) to obtain

(I + hR−1BTPk+1B)uk = −R−1BTPk+1(I + hA)xk (A.11)

Thus as in the continuous case, we now have a feedback control law for computing

uk. We note that (A.11) approaches (A.10) as N gets big.
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Appendix B

Definitions

In view of the varied conventions used in different texts, in this appendix, we

provide a short list of our definitions.

B.1 Definitions from Linear Systems Theory

The definitions here are needed for Theorem 2.0.1 in Chapter 2. Although these

definitions hold just as well for matrices over C, our LQR problem is over R, and so

we let A, B, and Q be real n × n, n × m, and m × n matrices respectively.

controllable subspace

The controllable subspace CA,B of the matrix pair (A,B) is defined as the range

of the n × mn matrix [B AB A2B · · ·An−1B].

controllable

The matrix pair (A,B) is called controllable if its controllable subspace CA,B has

dimension n. We note that (A,B) is controllable if and only if the eigenvalues
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of A + BK can take on arbitrary prescribed values by appropriately choosing

K.

stabilizable

The matrix pair (A,B) is called stabilizable if there exists a K such that the

eigenvalues of A + BK are in the open left half plane. Obviously, if (A,B) is

controllable, then it is stabilizable.

observable and detectable

The matrix pair (Q,A) is called observable (detectable) if (AT , QT ) is controllable

(stabilizable).

These terms derive from the behavior of the linear system ẋ = Ax + Bu, y = Qx

associated with the matrices A, B, and Q. For instance, if (A,B) is controllable,

then for an arbitrary initial state x1 at time t1, and an arbitrary target state x2,

there exists a finite time t2 > t1 and a control signal u(t) over [t1, t2] which moves the

system from x1 at time t1 to x2 at time t2.

B.2 Definitions from Chapter 3

direct sum

If V and W are vector spaces over F, then we define their direct sum V ⊕W to

be a vector space over F given by the Cartesian product V × W endowed with

the obvious addition and scalar multiplication:

(v1, w1) + (v2, w2) �→ (v1 + v2, w1 + w2), and α(v, w) �→ (αv, αw). (B.1)

bilinear operator

Given three vector spaces V , W , and X over the same base field F, a bilinear
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operator is a function B : V × W −→ X such that for any w ∈ W , the map

v �→ B(v, w) is a linear operator from V to X, and for any v ∈ V , the map

w �→ B(v, w) is a linear operator from W to X.

– If V = W and B(v, w) = B(w, v) for all v, w ∈ V , then we say that B is

symmetric.

– If V = W and B(v, w) = B(w, v) for all v, w ∈ V , we say B is conjugate

symmetric.

– When X = F, we call B a bilinear form.

quadratic form

Let V be a vector space over a field F. A map Q : V −→ F is called a quadratic

form on V if

– Q(αv) = α2Q(v) for all α ∈ F and v ∈ V .

– B(u, v) = Q(u + v) − Q(u) − Q(v) is a bilinear form on V .

non-degeneracy

A bilinear form B : U × V −→ F is called non-degenerate when B(u, v) =

0 ∀u =⇒ v = 0, and B(u, v) = 0 ∀v =⇒ u = 0. Of course for this to happen,

we need dim(U) = dim(V ). If U = V , then B(u, u) = 0 only if u = 0, and if

B maps to R when both its arguments are the same, then by continuity, either

B(x, x) > 0 or B(x, x) < 0 for all x �= 0. In the first case B is called positive.

inner product

An inner product on a vector space V over C is a conjugate symmetric, positive,

non-degenerate bilinear form on V , (with the conjugate requirement vanishing

in the case that V is a vector space over R).
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positive definite

An operator C on an inner product space (V, 〈•, •〉) is said to be positive definite

if 〈Cx, x〉 ≥ 0∀x ∈ V , with 〈Cx, x〉 = 0 only if x = 0.

symplectic

A bilinear form B is called symplectic if it is non-degenerate and if B(u, v) =

−B(v, u). As for etymological origins, the adjective symplectic derives from

the Greek symplektikos which means intertwining. The associated Greek verb

symplekein means to plait together or intertwine (8).

symplectic vector space

A vector space endowed with a symplectic bilinear form is called a symplectic

vector space.

symplectic complement

Let W be a symplectic vector space with symplectic form σ. If Λ is a subspace

of W , then we define its symplectic complement Λ⊥ by

Λ⊥ = {v ∈ W |σ(v, w) = 0 for all w ∈ Λ} (B.2)

We note that (Λ⊥)⊥ = Λ and that dim Λ + dim Λ⊥ = dim W . Also, Λ ⊂ Λ⊥ is

equivalent to

X,Y ∈ Λ =⇒ σ(X,Y ) = 0, (B.3)

and Λ⊥ ⊂ Λ is equivalent to

σ(X,Y ) = 0 ∀X ∈ Λ =⇒ Y ∈ Λ. (B.4)

There are many different ways in which Λ can relate to Λ⊥. The two of interest

to us are as follows:
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– if Λ ∩ Λ⊥ = {0},then Λ is called symplectic. Λ is symplectic if and only

if σ restricts to a non-degenerate form on Λ. A symplectic subspace with

the restricted form is a symplectic vector space in its own right.

– if Λ = Λ⊥ then Λ is called Lagrangian. If Λ is a Lagrangian subspace of

W , then dim(Λ) = 1
2
dim(W ).

dual space

The dual space of a finite dimensional vector space V is given by L(V, F) and

is denoted V ′. The mappings comprising V ′ are referred to as functionals. The

dual space V ′ has the same dimension as V , as can be seen by noting that V ′

is isomorphic to the space of 1×dim(V ) matrices.

B.3 Adjoints

In this section, we discuss the meanings of the word adjoint used in this report.

We begin with a definition of the adjoint of a map between inner product spaces.

A adjoint:

If A : U −→ V , then the adjoint A∗ of A is given by A∗ : V −→ U such that

〈A∗v, u〉
U

= 〈v, Au〉
V

for all u ∈ U and for all v ∈ V , where 〈•, •〉
U

and 〈•, •〉
V

are

inner products on U and V respectively. As a diagram, this definition becomes

A : U V�

〈A∗v, u〉
U

= 〈v, Au〉
V

V : A∗U �

∀u ∈ U
∀v ∈ V

We let M(A, {ui}, {vi}) denote the matrix of a map A : U −→ V with respect to a

basis {ui}m
i=1 on U and a basis {vi}n

i=1 on V . If aij is a generic element at row i and

column j of this matrix, then Auj = a1jv1 + a2jv2 + · · ·+ anjvn. It follows that if the
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bases {ui} and {vi} are orthonormal with respect to 〈•, •〉
U

and 〈•, •〉
V

respectively,

then M(A∗, {vi}, {ui}) is the conjugate transpose of M(A, {ui}, {vi}). With this in

mind, we define the adjoint of a matrix in the obvious way,

B matrix adjoint:

The matrix adjoint of a matrix is its conjugate transpose.

The next definition makes use of the dual space V ′ naturally associated with a vector

space V . If x ∈ V and ξ ∈ V ′, then we let 〈ξ, x〉
V

denote ξ(x), where the subscript

V indicates that elements from V are considered vectors, and elements from the dual

space V ′ are considered functionals. This pairing of elements from V and V ′ is highly

symmetrical; because the dual of V ′ is simply V again, we find it pleasing to think

of V and V ′ not as one deriving from the other but as two sides of the same coin. In

particular, we note that 〈ξ, x〉
V

= 〈x, ξ〉
V ′, where on the right, ξ ∈ V ′ is considered a

vector and x ∈ V is considered a functional.

C natural adjoint:

If A : U −→ V , then we define the natural adjoint A′ of A by A′ : V ′ −→ U ′

such that 〈A′ω, v〉
V

= 〈ω,Av〉
U

for all ω ∈ U ′ and for all v ∈ V , where 〈•, •〉
U

and 〈•, •〉
V

are as discussed immediately above. As a diagram, this definition

becomes

A : U V�

〈A′ω, v〉
V

= 〈ω,Av〉
U

V ′ : A′U ′ �

∀v ∈ V
∀ω ∈ V ′

The natural adjoint C requires fewer ingredients than the adjoint A (in particular U

and V don’t have to have inner products), and so it charms us with the aesthetics

of minimalism. Unfortunately however, A and C are irreconcilable in the complex

setting, due to the necessary conjugate symmetry of any inner product on a complex
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vector space, (i.e., inner products on complex vector spaces are hermitian). In detail,

we make the following

Claim: There are no isomorphisms IU : U ′ −→ U and IV : V ′ −→ V , and no inner

products 〈•, •〉
U

and 〈•, •〉
V

for which the mappings A∗ : V −→ U and IU ◦ A′ ◦ I−1

V :

V −→ U are the same.

Proof: First note that if {ui} and {vi} are bases on U and V , and if we construct the

corresponding bases {ũi} and {ṽi} on U ′ and V ′ (so that ũi(uj) = δij and ṽi(vj) = δij),

then M(A′, {ṽi}, {ũi}) is the transpose (no conjugate) of M(A, {ui}, {vi}). Now let

{ui} and {vi} be orthonormal with respect to inner products on U and V . We

established already that if M(A, {ui}, {vi}) = [aij], then M(A∗, {vi}, {ui}) = [āji].

The (i, j) element of M(IU ◦ A′ ◦ I−1

V , {vi}, {ui}) is given by

M(I−1

V , {vi}, {ṽi})M(A′, {ṽi}, {ũi})M(IU , {ũi}, {ui}) = eikalkflj, (B.5)

with summation on the repeated indices. There is no choice of [eik] and [flj] which

gives āji (the best we can obtain is aji).�

In the case of real mappings however (as with the matrices in Chapter 3), definitions

A and C can be made to coincide.
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Appendix C

Theorems from Chapter 3

Here we offer detail on claims made in Chapter 3. As noted in Chapter 4, this

development works just as well if we replace V ′ with V , and if we replace 〈•, •〉
V

with

an inner product on V . Each proof in this appendix (and in fact in this entire thesis)

is original, and not taken from any reference.

Theorem C.0.1 Any symplectic bilinear form σ(x, y) on an even dimensional vector

space W can be expressed in terms of some non-degenerate bilinear form 〈•, •〉 as

〈p1(x), p2(y)〉−〈p2(x), p1(y)〉. Here p1(x) is the projection of x onto a subspace W1 of

W , and p2(x) is the projection of x onto a subspace W2 of W , where W1 ⊕W2 = W ,

and dim W1 = dim W2 = 1
2
dim W .

Proof: We will build a basis (w1, . . . , wn, w̃1, . . . , w̃n) for the 2n dimensional space

W so that the given symplectic bilinear form has the desired representation, with

W1 = span(w1, . . . , wn), W2 = span(w̃1, . . . , w̃n), and

〈x, y〉 : = x1ỹ1 + x2ỹ2 + · · · + xnỹn, (C.1)

+ x̃1y1 + x̃2y2 + · · · + x̃nyn.
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where xi and x̃i are the components of x with respect to the constructed basis ac-

cording to

x = x1w1 + · · · + xnwn + x̃1w̃1 + · · · + x̃nw̃n. (C.2)

Our argument is inductive, and involves the construction of n subspaces V1, V2, . . . ,

Vn of W . Let V1 := W and pick any nonzero w1 ∈ V1. Then pick w̃1 ∈ V1 so

that σ(w1, w̃1) = 1. This is possible to do because σ is symplectic and therefor

non-degenerate on V1. Note that span({w1, w̃1}) is a 2-dimensional subspace of V1,

(w̃1 = κw1 isn’t possible because it would cause σ(w1, w̃1) = 0), and that a dimension

2(n − 1) subspace V2 exists such that σ(ω1, v) = 0 and σ(ω̃1, v) = 0 for all v ∈ V2.

Note that V2 ⊕ span(w1, w̃1) = V1, and that σ|V2 is a symplectic form over V2, and so

by induction we obtain the desired basis elements.�

Theorem C.0.2 Λ ⊂ W can be written as {

⎡
⎢⎣ x

Px

⎤
⎥⎦ : x ∈ V } if and only if π|Λ is a

bijection.

Proof: Let π : W −→ V be the natural projection defined by π([x y]T ) = x. If

Λ ⊂ W is given by {[x Px]T |x ∈ V }, then π̃ := π|Λ is clearly a bijection. For the

converse, if Λ is a subspace of W for which π̃ := π|Λ is a bijection, then π̃ ∈ L(Λ, V ),

π̃−1 ∈ L(V, Λ), and x ∈ V gets sent by π̃−1 to [x y]T ∈ Λ. Composing the linear map

π̃−1 with the projection from [x y]T ∈ Λ to y ∈ V gives P ∈ L(V ) such that y = Px,

allowing Λ to be expressed as {[x Px]T |x ∈ V }.�

Theorem C.0.3 A subspace of W given by Λ = {[x Px]T |x ∈ V } is Lagrangian if

and only if P = P ′.
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Proof: If Λ is Lagrangian, then σ(X,Y ) = 0 for all X,Y ∈ Λ. Using (3.3)4, we note

that

σ(X,Y ) = σ(

⎡
⎢⎣ x

Px

⎤
⎥⎦ ,

⎡
⎢⎣ y

Py

⎤
⎥⎦) = 〈Px, y〉

V
−〈Py, x〉

V
= 〈Px, y〉

V
−〈P ′x, y〉

V
= 〈(P−P ′)x, y〉

V

(C.3)

for all x, y ∈ V , and so we must have P = P ′. For the converse, let Λ = {[x Px]T |x ∈
V } with P = P ′. The steps already taken show that σ(X,Y ) = 0 for all X,Y ∈ Λ.

Now consider [x η]T ∈ W not in Λ, that is, with η �= Px. We want to show that

some u ∈ V exists so that [u Pu]T ∈ Λ satisfies σ([x η]T , [u Pu]T ) �= 0. Note that

σ(

⎡
⎢⎣x

η

⎤
⎥⎦ ,

⎡
⎢⎣ u

Pu

⎤
⎥⎦) �= 0 ⇐⇒ 〈η, u〉

V
−(〈Pu, x〉

V
= 〈P ′x, u〉

V
= 〈Px, u〉

V

)
= 〈η−Px, u〉

V
�= 0

(C.4)

where we’ve used (3.3)4 and the hypothesis that P = P ′. If no such u exists, then

〈y − Px, u〉
V

= 0 for every u ∈ V , in particular for u = η − Px. This however

implies that η − Px = 0, which is a contradiction, and so it must be that σ(X,Y ) =

0 ∀X ∈ Λ =⇒ Y ∈ Λ as desired. Finally, note that Λ is isomorphic to V , and so

dim Λ = dim V = 1
2
dim W . Thus Λ is Lagrangian as desired.�

Theorem C.0.4 The Hamiltonian F defined by F =

⎡
⎢⎣ A C

−D −A′

⎤
⎥⎦ can equivalently

be defined by σ(X,FY ) = Q(X,Y ) for all X,Y ∈ W .

Proof: Start with F : W −→ W written as

F =

⎡
⎢⎣F11 F12

F21 F22

⎤
⎥⎦ . (C.5)

Then, σ(X,FY ) = Q(X,Y ) becomes

〈x2, F11y1+F12y2〉V−〈F21y1+F22y2, x1〉V = 〈Dx1, y1〉V +〈y2, Ax1〉V +〈x2, Ay1〉V +〈y2, Cx2〉V
(C.6)

40



where x1, x2, y1, and y2 are arbitrary vectors in V . Setting x2 and y2 to zero gives

− 〈F21y1, x1〉V = 〈Dx1, y1〉V , (C.7)

=⇒ 〈−F21y1, x1〉V = 〈D′y1, x1〉V ,

from which it follows that F21 = −D′ = −D. Similarly, we find that F22 = −A′,

F11 = A, and F12 = C.�

Theorem C.0.5 σ(X,FY ) + σ(FX, Y ) = 0

Proof:

σ(X,FY ) = Q(X,Y ) from C.0.4
= Q(Y,X) from the symmetry of Q
= σ(Y, FX) from C.0.4
= −σ(FX, Y ) from the skew-symmetry of σ.

Theorem C.0.6 Let B : V × V −→ F be a non-degenerate bilinear form on a finite

dimensional vector space V . For every functional ϕ in the dual space V ′, there exists

a unique x ∈ V such that ϕ(y) = B(y, x) for all y ∈ V .

Proof: Let {ei} be a basis for V . We need to show that a unique x =
∑

xiei exists

so that ϕ(ei) = B(ei, x) for each ei. Finding the xi’s is accomplished by solving⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ϕ(e1)

ϕ(e2)

...

ϕ(en)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B(e1, e1) B(e1, e2) · · · B(e1, en)

B(e2, e1) B(e2, e2) · · · B(e2, en)

...
...

...

B(en, e1) B(en, e2) · · · B(en, en)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(C.8)

We’ll be done if we can show that the matrix is invertible. If the matrix isn’t invertible,

then some nonzero [x1, x2, · · · , xn]T gets mapped to zero, corresponding to a nonzero

x for which B(ei, x) = 0 for each ei. This implies that B(x, x) = 0 which contradicts

the definition of B as a non-degenerate bilinear form.�
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Theorem C.0.7 A Lagrangian subspace on which Q = 0 is equivalent to one which

is invariant under F .

Proof: Let v ∈ Λ where Λ is a Lagrangian subspace. We need to show that Fv ∈ Λ

if and only if Q vanishes on Λ. If Q vanishes on Λ, then Q(u, v) = 0 for every u ∈ Λ.

Using C.0.4, this becomes σ(u, Fv) = 0 for all u ∈ Λ, which means that Fv ∈ Λ. For

the converse, let Fv ∈ Λ, causing σ(u, Fv) = 0 for every u ∈ Λ. Using C.0.4 again we

see that this implies Q(u, v) = 0 for every v ∈ Λ, and so Q vanishes on Λ as desired,

(v was chosen arbitrarily in Λ to begin with).�

Definition of VΛ

For any λ ∈ C, we let Vλ denote the subspace of W consisting of vectors v for which

(F − λ)Nv = 0 for N sufficiently large. Note that Vλ is defined for every λ ∈ C,

whether or not λ ∈ Spec(F ). When λ is not an eigenvalue of F , Vλ = {0}, otherwise

Vλ is the nonzero space of generalized eigenvectors of F associated with λ.

Theorem C.0.8 λ1 + λ2 �= 0 implies that σ(Vλ1 , Vλ2) = 0.

Proof: Start with λ1, λ2 ∈ C such that λ1+λ2 �= 0. We suppose that λ1, λ2 ∈ Spec(F )

because if this is false, then the theorem conclusion holds trivially. We first establish

that (F +λ2)Vλ1 = Vλ1 , by showing that (F +λ2) is a bijective linear operator on Vλ1 .

• We first show that (F + λ2) is a linear operator on Vλ1 .

v ∈ Vλ1 implies that for some N , (F−λ1)
Nv = 0, which implies that (F+λ2)(F−

λ1)
Nv = 0. But (F +λ2) commutes with (F−λ1)

N , and so (F−λ1)
N(F +λ2)v =

0, establishing that (F + λ2)v ∈ Vλ1 as desired. (We had to make sure that

(F + λ2) didn’t map from Vλ1 to outside of Vλ1).

• Next we show that (F + λ2) is an injective linear operator on Vλ1 .

We need to show that 0 is the only vector in Vλ1 that is mapped to 0 by (F +λ2).
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If this is false, then some nonzero v ∈ Vλ1 satisfies Fv = −λ2v. Because v ∈ Vλ1 ,

some N exists for which (F − λ1)
Nv = 0. But

(F − λ1)
Nv = (F − λ1)(F − λ1) · · · (F − λ1)v = v(λ1 + λ2)

N(−1)N �= 0, (C.9)

which is a contradiction.

An injective operator is also bijective, and so we are done. If (F +λ2)Vλ1 = Vλ1 , then

(F + λ2)
NVλ1 = Vλ1 for any N , and so

σ(Vλ1 , Vλ2) = σ((F + λ2)
NVλ1 , Vλ2) = σ(Vλ1 , (−F + λ2)

NVλ2), (C.10)

where the last equality is due to C.0.5 and the linearity of σ. Note that (−F +λ2)
NVλ2

is 0 for N sufficiently large, and so σ(Vλ1 , Vλ2) = 0 as desired.�

Theorem C.0.9 λ ∈ Spec(F ) implies that λ̄,−λ ∈ Spec(F ).

Proof: Let λ ∈ Spec(F ). Then Fv = λv implies F v̄ = λ̄v̄ (F = F̄ because F

is composed of maps that are real), and so λ̄ ∈ Spec(F ) as desired. To show that

−λ ∈ Spec(F ), let v be a nonzero vector in Vλ. Using C.0.8, we know that σ(v, Vμ) = 0

whenever μ �= −λ. If −λ was not an eigenvalue of F , then we would have V−λ = {0},
causing σ(v, V−λ) = 0 as well. This means σ(v, w) = 0 for every w ∈ W , which

contradicts the fact that v �= 0 and that σ is non-degenerate. �

Theorem C.0.10 When λ �= 0, Vλ is the dual space of V−λ.

Proof: Let Vλ ⊂ W be given, and let V ′
λ denote its dual. Noting that σ is a symplectic

bilinear form on W , we know from C.0.6 that every ϕ ∈ V ′
λ has a unique corresponding

X ∈ W for which ϕ(Y ) = σ(Y,X) for all Y ∈ Vλ. But in fact, from C.0.8, it must

be that X only has components in V−λ. With {ϕi} a basis for V ′
λ, and with {Xi} a

43



collection of corresponding vectors in V−λ, we can establish a linear mapping from V ′
λ

into V−λ by ϕi �→ Xi.

Suppose that this mapping is not injective. Then it sends some nonzero functional

ϕ = γ1ϕ1 + · · ·+ γnϕn to γ1X1 + · · ·+ γnXn = 0. Because ϕ ∈ V ′
λ is nonzero however,

some nonzero Y ∈ Vλ exists for which ϕ(Y ) �= 0. Note that

ϕ(Y ) = γ1ϕ1(Y ) + · · · + γnϕn(Y )

= γ1σ(Y,X1) + · · · + γnσ(Y,Xn)

= σ(Y, γ1X1 + · · · + γnXn)

= σ(Y, 0) = 0 (C.11)

which is a contradiction, and so the mapping is injective.

To show surjectivity, suppose some nonzero X ∈ V−λ is beyond the range of the

mapping. Then, consider the functional ϕ(Y ) := σ(Y,X). From C.0.8, σ(Y,X) = 0

for every Y not in Vλ. If this functional was nonzero for some Y ∈ Vλ, X would be

within the range of our mapping, contrary to our supposition. So it must be that

σ(Y,X) = 0 for every Y in Vλ, and thus for every Y in W . But X �= 0 and so this

contradicts the non-degeneracy of σ.

Thus the proposed mapping is surjective and we have established a bijection

between V ′
λ and V−λ. The two are isomorphic, and we say that Vλ is the dual space

of V−λ. In greater detail, V ′
−λ = {α(X) | X ∈ Vλ} where α(X) : V−λ −→ C according

to α(X)(Y ) �→ σ(X,Y ).�

Theorem C.0.11 When λ �= 0, Vλ ⊕ V−λ is a symplectic vector space under σ.

Proof: If σ is a symplectic bilinear form on W then clearly σ(X,Y ) = −σ(Y,X)

for X,Y from any subspace of W , however σ is not automatically non-degenerate
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on subspaces of W . For instance if σ is a symplectic bilinear form on C
2, then σ is

necessarily 0 on any one dimensional subspace, and so it is impossible to satisfy

X �= 0 =⇒ ∃Y such that σ(X,Y ) �= 0. (C.12)

on this subspace. However this property does hold on Vλ ⊕ V−λ as we now show.

Pick any nonzero X ∈ Vλ ⊕ V−λ, and write X = X1 + X2, where X1 ∈ Vλ and

X2 ∈ V−λ. Either X1 or X2 (or both) are nonzero. We suppose X1 is nonzero (the

proof for X1 = 0 is similar). Suppose that no Y ∈ V−λ exists for which σ(X1, Y ) �=
0. By C.0.8, σ(X1, Y ) = 0 for Y taken from every other subspace of W , and so

σ(X1, Y ) = 0 for every Y in W . But X �= 0, which contradicts the non-degeneracy

of σ over W . Thus it must be that some Y ∈ V−λ exists for which σ(X1, Y ) �= 0, and

so σ is non-degenerate on Vλ ⊕ V−λ as desired.�

Theorem C.0.12 If α �= β then Vα ∩ Vβ = {0}.

Proof: Let α �= β, and suppose that some nonzero v is in both Vα and Vβ. Then

integers nα and nβ exist so that (F −α)nαv = 0, (F −β)nβv = 0, and (F −β)nβ−1v :=

ṽ �= 0. Note that (F − α)nα commutes with (F − β)nβ−1, and so

(F − α)nαv = 0 =⇒ (F − β)nβ−1(F − α)nαv = 0 =⇒ (F − α)nα ṽ = 0. (C.13)

But F ṽ = βṽ, and so the right-hand equality in (C.13) becomes (β−α)nα = 0, which

is a contradiction because α �= β.�

Theorem C.0.13 V0 is a symplectic vector space under σ.

Proof: If V0 = {0} (that is, if 0 �= Spec(F )), then σ is trivially a symplectic bilinear

form over V0, and V0 is a symplectic vector space under σ. Now suppose 0 ∈ Spec(F ).

In this case V0 contains more than the zero vector, and in fact has even dimension,
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because in the following decomposition of the even dimensional W ,

W = V0 ⊕ (Vλ1 ⊕ V−λ1) ⊕ (Vλ2 ⊕ V−λ2) ⊕ + · · · + ⊕(Vλn ⊕ V−λn). (C.14)

each term in parenthesis has even dimension, and none of these subspaces intersect

(see C.0.12). Of course σ(X,Y ) = −σ(X,Y ) for all X and Y in V0. To show the

non-degeneracy of σ over V0, note that if X is a nonzero vector in V0, then from C.0.8,

σ(X,Y ) = 0 for every Y not in V0. As with C.0.11, it then follows that there must

be some Y ∈ V0 for which σ(X,Y ) �= 0, or else we would have σ(X,Y ) = 0 for every

Y ∈ W where X �= 0, contradicting the non-degeneracy of σ over W .�

Theorem C.0.14 If U ⊂ W is F -invariant, then U is equal to a direct sum of

subspaces Ui of the subspaces Vλi
of generalized eigenvectors of F .

Example over R: Consider the independent vectors e1 and e2 in R
2. Clearly R

2 =

V1 ⊕ V2 where V1 = span({e1}) and V2 = span({e2}). The subspace U = span({e1 +

e2}) however is not given by the direct sum of subspaces of the Vi’s.

Proof: Suppose the subspace U is not equal to the direct sum of any collection of

subspaces Ui of Vλi
, where Vλi

is the space of generalized eigenvectors associated with

λi ∈ Spec(F ). The direct sum of the Vλi
’s is W , and so to every u ∈ U ⊂ W there

corresponds a unique element ui of each Vλi
such that u = u1 + · · · + un. It is easy

to verify that because U is a subspace, the collection of all possible such ui’s forms a

subspace Ui of Vλi
. This establishes that U ⊂ U1 ⊕ · · · ⊕ Un. Our hypothesis implies

that this subset relation is strict, that is, that some vector v1 + · · ·+vn ∈ U1⊕· · ·⊕Un

exists that isn’t in U , (keep in mind that vi ∈ Ui∀i).

In the proof of C.0.8, we established that λ1 + λ2 �= 0 implies (F + λ2)Vλ1 = Vλ1 ,

(equivalently that λ1 �= λ2 implies (F − λ2)Vλ1 = Vλ1). Note that with d = dim(W ),
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(F − λi)
d annihilates Vλi

. It follows that Fλi
:= (F − λ2)

d(F − λ3)
d · · · (F − λn)d is

a bijective operator on Vλ1 that annihilates every other Vλi
. Similarly, we define Fλi

for each λi. Because Fλi
is a bijective operator on Vλi

, every vi ∈ Ui ⊂ Vλi
has a

pre-image v̂i ∈ Vλi
.

If one of the pre-images v̂i ∈ Vλi
is not in Ui, then Fλi

maps an entire subspace

(e.g., αv̂i) into Ui ⊂ Vλi
. But Fλi

is a bijective operator on Vλi
, and so to make room

for the image of αv̂i, it must be that Fλi
moves some vectors off of Ui. Let ui be one

of these vectors. The corresponding vector in U gets mapped by Fλi
(a polynomial in

F ) to some vector in Vλi
that is not in Ui, that is, to a vector that is not in U . This

establishes that U is not invariant under F .

Now suppose that every pre-image v̂i ∈ Vλi
is in its respective Ui. To each of these

pre-images there corresponds a vector ui ∈ U such that Fλi
ui = vi. In words, the

sum of polynomial functions of F applied to vectors ui ∈ U is a vector v1 + · · · + vn

that is not in U . Thus U is not invariant under F .�

Theorem C.0.15 F -invariant Lagrangian subspaces of W can be represented as

Λ =

(⊕
λ∈Σ

Λλ

)
⊕ Λ0, (C.15)

where Λλ and Λ0 are F -invariant Lagrangian subspaces of the symplectic spaces Vλ ⊕
V−λ and V0 respectively, and Σ is a set satisfying Σ ∪ (−Σ) = Spec(F )\{0} and

Σ ∩ (−Σ) = ∅.

Proof: Let Λ be an F -invariant Lagrangian subspace of W . Note that W can be

expressed in terms of the invariant subspaces of F as

W = (Vλ1 ⊕ V−λ1) ⊕ (Vλ2 ⊕ V−λ2) ⊕ · · · ⊕ (Vλn ⊕ V−λn) ⊕ V0 (C.16)
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where the V0 term is present only when 0 ∈ Spec(F ). If A = B ⊕ C, we let PB(v)

denote the unique vector in B corresponding to v ∈ A. With this in mind we define

Λλ = {PVλ⊕V−λ
(v)|v ∈ Λ}. (C.17)

Before proceeding, we caution that vector subspaces are generally not closed under a

projection operation. For instance if A (B) is the x1 (x2) axis, then A⊕B is R
2, and

vectors in the subspace on which x1 = 2x2 will project to vectors not in this subspace.

To show that Λλ is a Lagrangian subspace of Vλ ⊕ V−λ, we note that

• Λ⊥
λ ⊂ Λλ ⇐⇒ σ(vλ, v̂λ) = 0 ∀vλ ∈ Λλ implies v̂λ ∈ Λλ

Start with v̂λ ∈ Vλ ⊕ V−λ that is not in Λλ. Note that v̂λ /∈ Λ, because if it was,

we’d have v̂λ ∈ Λλ contrary to hypothesis (note PVλ⊕V−λ
(v̂λ) = v̂λ). Because Λ

is Lagrangian, some v ∈ Λ exists for which σ(v, v̂λ) �= 0. By the linearity of σ

and C.0.8, σ(vλ, v̂λ) �= 0, where vλ = PVλ⊕V−λ
(v) ∈ Λλ ⊂ Vλ ⊕ V−λ. Thus we

have shown that some vλ ∈ Vλ ⊕ V−λ exists in Λλ for which σ(vλ, v̂λ) �= 0.

• Λλ ⊂ Λ⊥
λ ⇐⇒ σ(vλ, v̂λ) = 0∀vλ, v̂λ ∈ Λλ

Given vλ, v̂λ ∈ Λλ, we know from the definition (C.17) of Λλ that vectors v and

v̂ exist in Λ that are projected by PVλ⊕V−λ
(•) to vλ and v̂λ respectively. Because

Λ is an F -invariant subspace of W , we know from C.0.14 that Λ is given by

the direct sum of subspaces Ui of W , where each Ui is a subspace of Vλi
⊕ V−λi

.

Of course, because Λ is Lagrangian, these Ui’s will end up having additional

properties, but these are of no concern to us right now. What matters is that

any vector in the direct sum of the Ui’s is in Λ. In particular, vλ and v̂λ are in

Λ, and so σ(vλ, v̂λ) = 0, which is what we wanted to show.

• dim(Λλ) = 1
2
dim(Vλ ⊕ V−λ)

Let {bi} be a basis for Λλ, and define the operator Tλ on Vλ ⊕ V−λ by

Tλ(x) = b1σ(x, b1) + b2σ(x, b2) + · · · + bnσ(x, bn) (C.18)
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Note that dim(Vλ⊕V−λ) = dim(ker(Tλ))+dim(range(Tλ)), and so we’ll be done

if we can show that ker(Tλ) and range(Tλ) both equal Λλ.

– ker(Tλ) = Λλ

We’ve already established that Λλ = Λ⊥
λ , and so if x ∈ Λλ, then Tλ(x) = 0.

If x /∈ Λλ, then some y ∈ Λλ exists for which σ(x, y) �= 0, and so Tλ(x) �= 0.

– range(Tλ)) = Λλ

We need to show that for every bi, there is some ci ∈ Vλ ⊕ Vλ for which

σ(bk, ci) is nonzero for k = i, and zero for k �= i. We do this by defining

the operator T on W as the sum of all the Tλ’s. The same reasoning

used to establish that ker(Tλ) = Λλ (above) shows that ker(T ) = Λ. Of

course dim(W ) = dim(ker(T ))+dim(range(T )). Because Λ is Lagrangian,

it follows that dim(range(T )) = dim(Λ). Note that T has the same form as

Tλ, but with more bi’s. These bi’s comprise a basis for Λ, and so range(T ) ⊂
Λ. It follows immediately that range(T ) = Λ, and so it must be that for

every bi, some c ∈ W causes σ(c, bk) to be zero (nonzero) for k = i (k �= i).

When bi is one of the basis elements of Λλ, we write the corresponding

c as ci + ĉ, where ci = PVλ⊕V−λ
(c). Then from C.0.8 it follows that 0 �=

σ(c, bi) = σ(ci, bi) + σ(ĉ, bi) = σ(ci, bi). Similarly, for any of the other bk’s

in Λλ, 0 = σ(c, bk) = σ(ci, bk) + σ(ĉ, bk) = σ(ci, bk), and so we are done.

To show that Λλ is invariant under F , we note that vλ ∈ Λλ implies the existence

of some v ∈ Λ such that PVλ⊕V−λ
(v) = vλ. We know that Λ is F -invariant, and so

we’ll be done if we can show that F (PVλ⊕V−λ
(v)) = PVλ⊕V−λ

(Fv). But this equality is

obvious; the (Vλi
⊕ V−λi

)’s are F -invariant. Writing v = vλ1 + vλ2 + · · · + vλn where

vλi
∈ Vλi

⊕ V−λi
, we have Fv = Fvλ1 + Fvλ2 + · · · + Fvλn , where Fvλi

∈ Vλi
⊕ V−λi

.
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At this point we’ve constructed subspaces Λλ ⊂ Vλ ⊕ V−λ that are Lagrangian.

Certainly Λ is a subset of the direct sum of these subspaces. Equality follows from

the fact that the dimension of the direct sum equals the dimension of Λ. In detail,

dim(Λλ1 ⊕ · · · ⊕ Λλn) = dim(Λλ1) + · · · + dim(Λλn), (C.19)

where Λλi
has half the dimension of Vλi

⊕V−λi
. It follows that the numbers dim(Λλi

)

sum to half the dimension of W , which is the same as the dimension of Λ.

Theorem C.0.16 When α �= 0, V±α is an F -invariant Lagrangian subspace of Vα ⊕
V−α.

Proof: The F -invariance is obvious, as is the dimensionality requirement. To show

that the orthogonal complement of V±α in Vα ⊕ V−α is exactly V±α, first note that

from C.0.8, x, y ∈ V±α implies σ(x, y) = 0. Next, pick some x ∈ Vα ⊕ V−α that is not

in V±α. We need to show that for some y ∈ V±α, σ(x, y) �= 0. If no such y exists,

then σ vanishes identically on Vα⊕V−α. However this contradicts C.0.11, in which we

establish that Vα ⊕V−α is a symplectic vector space under σ (recall from (3.5) that if

σ(x, y) = 0 for all y ∈ S̃, then x = 0, where S̃ is a symplectic vector space under σ).�

Theorem C.0.17 If μ ∈ Spec(F ) has positive real and imaginary parts, then Vμ⊕Vμ̄

is spanned by real vectors in W .

Proof: If {bi} is a basis for Vμ, then every bi satisfies (F − μ)Nbi = 0 for some N ,

and so (F − μ̄)N b̄i = 0 as well, showing that the vectors {b̄i} are all in Vμ̄. Every

linear combination γib̄i of the b̄i’s is nonzero, because if one wasn’t, then taking the

conjugate would give a nonzero linear combination of the bi’s. It follows that there

are dim(Vμ) independent vectors in Vμ̄. If dim(Vμ̄) was greater than dim(Vμ), there

would be a c ∈ Vμ̄ independent of the b̄i’s. Reusing our previous arguments (this
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time going from Vμ̄ to Vμ), we find that this c would be a vector in Vμ independent

of the bi’s. But this is impossible because {bi} is a basis for Vμ, and so it must be

that {b̄i} is a basis for Vμ̄. From C.0.12, we know that Vμ ∩ Vμ̄ = {0} and so the bi’s

and b̄i’s comprise a basis B for Vμ ⊕Vμ̄. Note that span(Re(bi), Im(bi)) = span(bi, b̄i).

Replacing each conjugate pair bi, b̄i in B with the real vectors Re(bi) and Im(bi) has

no effect on the number of items in B or their span, and so the real vectors Re(bi)

and Im(bi) comprise a basis for Vμ ⊕ Vμ̄.�
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Appendix D

Field Switching

In this appendix we discuss moving back and forth between vector spaces over R

and C.

D.1 Real Objects in Vector Spaces over C

Let VC be an n-dimensional vector space over C. The following equivalent con-

structions establish the real part, imaginary part, and conjugate of a vector in VC.

Either of these constructions will be said to endow VC with real content.

i. Choose a basis {ei} of VC. If v =
∑

(ai + ibi)ei is in VC, then we define the real

part of v as
∑

aiei, the imaginary part of v as i
∑

bkek, and the conjugate of v

as
∑

(ak − ibk)ek.

ii. Choose a map K : VC −→ VC with the properties K(λv) = λ̄K(v), K2(v) = v,

and K(u+v) = K(u)+K(v). Such a map is referred to as a real structure, and

serves as a conjugation operator on VC. If v ∈ VC, then we define the real part
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of v as 1
2
(v + K(v)), the imaginary part of v as 1

2
(v −K(v)), and the conjugate

of v as K(v).

We use Re(v), Im(v), and v̄ to denote the real part, imaginary part, and conjugate

of v respectively. A vector with no imaginary part is called real, and a vector with

no real part is called imaginary.

D.1.1 Real Maps

Let U and V be vector spaces over C with real content. We call A ∈ L(U, V ) a

real map if it maps real vectors in U to real vectors in V . If A is real then the matrix

of A with respect to real bases in U and V consists of real numbers.

D.1.2 Equivalent Definitions

Different bases in i. and real structures in ii. can endow VC with the same real

content. For instance,

• if {ẽi} is a basis of VC such that the coefficients of each ẽi with respect to the

{ei} basis from i. are real numbers, then the real content on VC established by

using {ẽi} in i. is the same as the real content on VC established by using {ei}.

• if A is a real bijective linear operator on VC with respect to the real structure K,

then the same real content established by the real structure K is also established

by the real structure A−1◦ K ◦ A.
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D.1.3 Subspaces

In this section we discuss some of the many different conceptions of a real subspace

of a complex vector space with real content. We use only the first of these in the

thesis; the remaining concepts (like totally real and its relatives), are included for the

sake of contrast. Let VC be an n-dimensional vector space over C with real content.

• A subspace U ⊂ VC will be called real if it can be given as the C-span of real

vectors in VC, (which is equivalent to requiring that Ū = U). Obviously VC

is a real subspace of itself. Also, we note that subspaces of VC exist which

are not real. For instance, if {ei} is a real basis of VC, then spanC({e1}) and

spanC({ie2}) are real, but spanC({e1 + ie2}) is not real. One peculiarity of this

definition is that a real subspace of VC will always contain imaginary vectors,

(for instance ie1 ∈ spanC({e1})).

The elements in the n-dimensional complex vector space VC comprise a 2n-dimensional

vector space over R, which we call VR. Unless otherwise noted, a subspace in this

discussion inherits the field of its parent space.

• Let VC be a vector space over C with real content. If U is a subspace of VC,

then we define the real projection Re(U) of U by

Re(U) = {Re(u)|u ∈ U}. (D.1)

We note that Re(U) is merely a subset (not a subspace) of VC. However Re(U)

is a subspace of the 2n-dimensional VR, and Re(U) is also a subspace of the

n-dimensional spanR({ei}), where {ei} is a real basis of VC. The inequality

dim(U) ≤ dim(Re(U)) ≤ min(2 dim(U), n) (D.2)
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holds whether Re(U) is regarded as a subspace of VR or of spanR({ei}). For

instance if the subspace U of VC is given by the (1-dimensional) C-span of

e1 + ie2, then Re(U) is given by the (2-dimensional) R-span of e1 and e2.

• A subspace U of VR is called totally real if U ∩ iU = {0}. We note that complex

multiplication is well defined on VR even though VR is a vector space over R.

Also, VC need not have real content for this definition to make sense.

• We call a subspace of VR entirely real (entirely imaginary) if it can be given as

the R-span of real (imaginary) vectors in VC. We call a subspace of VR entirely

mixed if it can be given as the R-span of both real and imaginary vectors in VC.

The following examples illustrate the distinction between the above subspaces of VR.

We also show these relationships in Figure D.1.

- if U = spanR({e1}), then U is entirely real and totally real.

- if U = spanR({ie2}), then U is entirely imaginary and totally real.

- if U = spanR({e1, ie2}), then U is entirely mixed and totally real.

- if U = spanR({e1, ie1}), then U is entirely mixed but not totally real, (note that

U = iU).

- if U = spanR({e1 + ie1}), or if U = spanR({e1 + ie2}), then U is totally real,

however U is neither entirely real, nor entirely imaginary, nor entirely mixed.

D.2 Moving from R to C

Here we use a vector space over R to construct a vector space over C. Although

this material isn’t used in the thesis, it is a natural complement to the previous
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VR

totally real

entirely
mixed

entirely real

entirely imaginary

Figure D.1. This diagram shows how the different subspaces of VR are related.

section, and it can be used to understand some of the ideas presented there. If U is

an n-dimensional vector space over R, we define the complexification UC of U to be

the vector space U × U over C with

• addition defined component-wise: (u1, u2) + (v1, v2) := (u1 + v1, u2 + v2),

• scalar multiplication defined by: (αr+iαi)·(u1, u2) := (αru1−αiu2, αru2+αiu1).

We call u the real part and v the imaginary part of (u, v) ∈ UC. Vectors in UC with

zero real (imaginary) parts will be called imaginary (real), and we call (u,−v) the

conjugate of (u, v). If {ek} is a basis for U , then {(ek, 0)} is a basis for UC, and so

dim(UC) = dim(U) as we might expect.

Linear Operators:

It is straightforward to show that F is a linear operator on UC if and only if

F can be written as (FR, FI) where FR and FI are linear operators on U , and

where the action of F on an element of UC is given by

(FR, FI)(ur, ui) = (FRur − FIui, FRui + FIur) (D.3)
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We call FR (FI) the real (imaginary) parts of F , and we call (FR, 0) ∈ L(UC)

the complexification of FR ∈ L(U).

Inner Products:

Starting with the inner product 〈•, •〉 on U , we can build a hermitian (i.e.,

conjugate symmetric) inner product 〈•, •〉C on UC according to

〈(ur, ui), (vr, vi)〉C := 〈ur, vr〉 + 〈ui, vi〉 + i(〈ui, vr〉 − 〈ur, vi〉). (D.4)

Symplectic Forms:

Starting with the symplectic form σ : U × U −→ R, we can build a symplectic

form σC : UC × UC −→ C according to

σC((ur, ui), (vr, vi)) = σ(ur, vr) − σ(ui, vi) + i(σ(ur, vi) + σ(ui, vr)). (D.5)

Symmetric Forms:

Starting with the symmetric form Q : U × U −→ R, we can build a symmetric

form QQ : UC × UC −→ C according to

QC((ur, ui), (vr, vi)) = Q(ur, vr) − Q(ui, vi) + i(Q(ur, vi) + Q(ui, vr)) (D.6)
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