September 21, 2006

Notes on Integrability

Disclaimer: My conception of what it means for something to be *integrable* is still evolving, and so these notes may contain errors. If you find any errors or if you'd like to discuss this topic with me, please send me email at watchwrk@me.berkeley.edu

Let V be an inner product space over \mathbb{R} and let the word vector field refer to a mapping from V to V.

Definition 1: The vector field **v** is called *integrable* on the open connected $B \subset V$ if the line integral

$$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{v} \cdot d\mathbf{x} \tag{1}$$

is independent of the path in B along which it is evaluated.

Definition 2: If $\Psi: V \longrightarrow \mathbb{R}$, then the *gradient* of Ψ is defined as the mapping $\nabla \Psi: V \longrightarrow V$ which satisfies

$$\nabla \Psi(\mathbf{x}) \cdot \mathbf{c} = \left. \frac{d}{ds} \Psi(\mathbf{x} + s\mathbf{c}) \right|_{s=0}$$
 (2)

for all $\mathbf{c} \in V$.

If $\Psi: V \longrightarrow \mathbb{R}$ and $\{\mathbf{e}_i\}$ is an orthonormal basis of V, then

$$\nabla \Psi = (\nabla \Psi \cdot \mathbf{e}_i) \mathbf{e}_i = \left(\left. \frac{d}{ds} \Psi(\mathbf{x} + s\mathbf{e}_i) \right|_{s=0} \right) \mathbf{e}_i = \frac{\partial \Psi}{\partial x_i} \mathbf{e}_i, \tag{3}$$

where $\frac{\partial \Psi}{\partial x_i}$ in the last term denotes $\frac{d}{ds}\Psi(\mathbf{x}+s\mathbf{e}_i)\big|_{s=0}$. Thus we obtain the usual formula for the gradient.

Theorem: The vector field \mathbf{v} is integrable on B if and only if there exists a $\Psi: B \longrightarrow \mathbb{R}$ for which $\nabla \Psi = \mathbf{v}$.

Proof: Let $\mathbf{x}(s)$ be any arc-length parameterized path in B, from $\mathbf{a} = \mathbf{x}(s_a)$ to $\mathbf{b} = \mathbf{x}(s_b)$. If a $\Psi : B \longrightarrow \mathbb{R}$ exists for which $\nabla \Psi = \mathbf{v}$, then the line integral of \mathbf{v} along the path $\mathbf{x}(s)$ is given by

$$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{v} \cdot d\mathbf{x} = \int_{\mathbf{a}}^{\mathbf{b}} \nabla \Psi \cdot d\mathbf{x} = \int_{s_a}^{s_b} \nabla \Psi(\mathbf{x}(s)) \cdot \mathbf{t}(s) ds = \int_{s_a}^{s_b} \frac{d}{d\tilde{s}} \Psi(\mathbf{x}(s) + \tilde{s}\mathbf{t}(s)) \bigg|_{\tilde{s}=0} ds, \tag{4}$$

where $\mathbf{t}(s)$ after the second equality is the unit tangent vector to $\mathbf{x}(s)$, and where the third equality follows from (2). Noting that $\mathbf{x}(s) + \Delta s \ \mathbf{t}(s) \longrightarrow \mathbf{x}(s + \Delta s)$ as $\Delta s \longrightarrow 0$, we obtain

$$\frac{d}{d\tilde{s}}\Psi(\mathbf{x}(s) + \tilde{s}\mathbf{t}(s))\Big|_{\tilde{s}=0} = \lim_{\Delta s \to 0} \frac{\Psi(\mathbf{x}(s) + \Delta s \mathbf{t}(s)) - \Psi(\mathbf{x}(s))}{\Delta s}$$

$$= \lim_{\Delta s \to 0} \frac{\Psi(\mathbf{x}(s + \Delta s)) - \Psi(\mathbf{x}(s))}{\Delta s}$$

$$= \frac{d\Psi(\mathbf{x}(s))}{ds}, \qquad (5)$$

which allows us to write (4) as

$$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{v} \cdot d\mathbf{x} = \int_{s_a}^{s_b} \frac{d\Psi(\mathbf{x}(s))}{ds} ds = \Psi(\mathbf{b}) - \Psi(\mathbf{a}). \tag{6}$$

This result is independent of the path $\mathbf{x}(s)$, as we wished to show.

Now suppose that the vector field \mathbf{v} is integrable on $B \subset V$. The path independence of the line integral (1) allows us to define a $\Psi : B \longrightarrow \mathbb{R}$ according to

$$\Psi(\mathbf{x}) = \int_{\mathbf{a}}^{\mathbf{x}} \mathbf{v} \cdot d\mathbf{x},\tag{7}$$

where **a** is some point in B. We need to show that $\nabla \Psi = \mathbf{v}$. Let $\{\mathbf{e}_i\}$ be an orthonormal basis for V, and note that

$$\Psi(\mathbf{x} + \varepsilon \mathbf{e}_i) - \Psi(\mathbf{x}) = \int_{\mathbf{x}}^{\mathbf{x} + \varepsilon \mathbf{e}_i} \mathbf{v} \cdot d\mathbf{x}.$$
 (8)

The line integral is path independent and so for convenience we evaluate it along the straight line from \mathbf{x} to $\mathbf{x} + \varepsilon \mathbf{e}_i$, (which is in the open set B for ε sufficiently small). We obtain

$$\Psi(\mathbf{x} + \varepsilon \mathbf{e}_i) - \Psi(\mathbf{x}) = \int_0^{\varepsilon} (\mathbf{v}(\mathbf{x}) \cdot \mathbf{e}_i + O(s)) ds = \varepsilon \mathbf{v}(\mathbf{x}) \cdot \mathbf{e}_i + O(\varepsilon^2).$$
 (9)

Dividing through by ε and taking the limit as $\varepsilon \longrightarrow 0$, we obtain

$$\left. \frac{d}{ds} \Psi(\mathbf{x} + s\mathbf{e}_i) \right|_{s=0} = \mathbf{v}(\mathbf{x}) \cdot \mathbf{e}_i. \tag{10}$$

which from (2) implies that

$$\nabla \Psi(\mathbf{x}) \cdot \mathbf{e}_i = \mathbf{v}(\mathbf{x}) \cdot \mathbf{e}_i. \tag{11}$$

This holds for every \mathbf{e}_i and so it follows that $\nabla \Psi = \mathbf{v}$ as desired.

Solving Problems: The easiest way to show that some vector field \mathbf{v} is non-integrable is to show that the integral (1) is path dependent. For instance, if V is the xy-plane and if $\mathbf{v} = [xy \ 0]^T$, then the integral (1) along the path consisting of a straight line from the origin to $[1 \ 0]^T$, and then another straight line from $[1 \ 0]^T$ to $[1 \ 1]^T$ is clearly zero. However the integral going in straight lines from the origin to $[0 \ 1]^T$ and then to $[1 \ 1]^T$ is nonzero.