Patrick Kessler
April 13, 2005

Planar Chain Dynamics

Keywords: Particle Dynamics, Constraints

1 Overview

We present the equations of motion for a chain of n point masses in a plane. The i** mass m; is located
by the position vector x;. We impose the constraints ||x;|| = I, and ||x; — x;,_1|| = [for i = 2,...,n, and
we define the vectors {e;} so that le; = x31, and le; = x; — x;_1 for i = 2,..,n. Letting {E;,E2} be a
fixed orthonormal basis in the plane, we define ¢; as the angle that E; has to rotate through to equal e;.
The angles {¢;} coordinitize the constrained chain. An alternate set of coordinates is given by {6;}, where
61 = ¢1 and 0; = ¢; — ¢;—1 for i = 2,...,n. These vectors and coordinates are illustrated in figure 1 below.
The equations of motion for the chain consist of the functions 6; = 6;(6;,0;), and follow in our derivation

ms

Figure 1: System coordinates.

from the balance law f = ma. In detail, we define the 2nx1 vector x by x = [X1; X2; ...; X,], where semicolons
are used in their Matlab sense. The vector x locates a ’super-particle’, which we imagine tracing out a
trajectory in R?”. Because of the constraints, x is restricted by an unknown 2nx1 constraint force f. to a
point p in an n-dimensional manifold M embedded in R?". Additional forces denoted by f also act on the
super-particle. The dynamics of the superparticle (and hence of the chain) are given by a balance of linear
momentum

f+f. = Mx (1)

where we define M =diag(m1,m1, ..., My, m,). The second derivatives of 6; are included in the components
of (1) in T, M, which we note is spanned by the columns of A = %. Using normality to prescribe the

constraint forces (i.e. choosing f. so that ATf. = 0), (1) becomes
ATE = ATMx (2)

Now it only remains to prescribe the forces f which act on the chain. We have gravity (in the E; direction)
act on every mass, and we also impose moments at every joint, proportional to 8; and 6, (corresponding
to spring and damping forces respectively). Finally, we apply the follower force —ae,, to m,,, where a is a
tunable parameter.

2 Equations of Motion

Letting s = >, _,., an expression for x is given by

[s1 cos ¢y] 1
s1 sin ¢y, 0
52 cos ¢y, 1
52 sin ¢y, 0
s3cosy | 1|1
53 sin ¢, 0
st cos ¢y, 1

| 57 sin ¢y, | 10

—_ O = O

0
1

1

0 1

1 01
0 1 0
1 0 1
01 0

0
1

1
0

1

[cos @1]

sin d)l
COS (o
sin ¢o
COS (3
sin (bg

COoS ¢,

sin ¢y, |

Here and throughout these notes, expressions are given in more than one form when analytical brevity leads to
expressions that are not easy to code. The matrix of ones and zeros above can be created in Matlab with the
commands P=[ones(1,n) ;zeros(1,n)]; P=tril(repmat([P(:)’;1-P(:)’]1,n,1));. Differentiating twice

with respect to time, we find that & = IAf — IB$2, where 6 = [010,...0,]7, where ¢? = [¢12¢22...q5n2]T,

where A is given by

[—s1 sin ¢y,
51 cos ¢,
—S% sin (bk
52 cos ¢y,
A — — 53 sin ¢,
53 cos ¢y,

—s7 sin ¢
| sT cos ¢

O = O O
—_ O = O
O = O =

1 0 1
0 1 0

[— sin ¢,
CoS @1
—sin ¢1
COS @1
_ | —sin¢;
COSs @1

— sin ¢
| cos ¢

0 0
0 0
—s2 sin ¢y, 0
3 cos ¢y, 0
—s3singy —s3singy
83 cos ¢, 53OS ¢
—sysing, —s5§ sin ¢y
S5 COS ¢y Sh COS Py
17— sin ¢1
COS (1
— sin ¢o
1 coS @2
0 1 —sin ¢s
1 0 1 cos ¢3
0 1 0 1 —sin ¢,
1 0 1 0 1] [coson
0 0 0
0 0 0
— sin ¢g 0 0
COS ¢ 0 0
—sings —singg 0
COS ¢ cos ¢3 0
—singy —singg —sin ¢y,
COS ¢ COS ¢3 COS ¢y, |

— sin ¢o

OO OO oo

0
0

—s7 sin ¢y,
sy, COS P, |

COs ¢o

—sin ¢3

Cos ¢3

—sin ¢y,

Cos ¢,

1

= e

[EE

== = =

—_

—_ = = =

0

0

0

0
—Sin¢3
Cos ¢3
—sin ¢y,
Cos ¢,

1

1 1

1 1 1

1 1 1

1 1 1

OO OO oo

— sin ¢,
oS ¢y, |

(note again that A = % and so the columns of A span T, M), and where B is given by

[cos ¢4 0 0 0
sin ¢ 0 0 0
COS 1 COS o 0 0
sing; sin¢g 0 0

B — |cosg1 cosga cos@s 0 (5)

sing, singe sings 0
COS¢1 COS¢s COS¢p3 ... COSQy

[sing1 singz sings ... sing, |

We note that x is given by [times the sum of the columns of B. The system dyanmics 6 can now be found
from

. . 1
ATMAG = ATMB®? + 7ATf (6)

2.1 Kinetic Energy

The system kinetic energy is given by

1 12 :
KE = §>'<TM5< = OT(gATMA)H (7)

2.2 Potential Energy

The system potential energy due to a gravitational body force acting on every mass in the E; direction is
given by
1

0
PE:gl(m1+2m2+~~+nmn)—gl[O m; 0 mo ... 0 mn}A . (8)

where the first term causes PFE to be zero when the chain is hanging straight down.

3 Forces

The force f acting on the superparticle is given by f = [f;f5;...;f,], where as with x we use semicolons in
their Matlab sense, and where f; is the force applied to mass m;. Forces are applied to the masses due to
gravitation, damping, and stiffness, and a follower force is applied to the very last mass.

3.1 Gravitation
The contribution to f due to gravity is given by f, where
f,=gM[1 0 1 0 ... 1 0"
3.2 Damping and Stiffness
The contributions to f due to damping and stiffness are given by f; and f; respectively where

£, = %Cbé (10)
1
f. = SCk(0 —brey)

where b =diag(by,...,b,) and k =diag(kq,...,k,) contain the damping and spring coifficients respectively
for each of the n joints, and where C is given by

[sing; —sing; — sin ¢ sin ¢ 0 0
—COoS¢1 COSp1 + COS o — COS ¢ 0 0
0 sin ¢9 —sin ¢o — sin ¢3 sin ¢3 0
0 — COS ¢ COS ¢ + COS P3 — Cos @3 0
0 0 sin ¢3 — sin ¢3 — sin ¢4 0
0 0 — Cos @3 COS ¢3 + COS Py 0
0 0 0 sin ¢4 0
C = 0 0 0 — COs ¢4 0 (11)
0 0 0 0 sin ¢y, 1
0 0 0 0 — COS Q1
0 0 0 0 —sin ¢p,—1 — sin ¢,
0 0 0 0 COS ¢p—1 + COS ¢y,
0 0 0 0 sin ¢,
| 0 0 0 0 — COS ¢, |
3.3 Follower Force
A follower force fy = —ae, is applied to the last mass m,,. Our interest is in the system stability as o is

varied.

4 Linearization
When the angles 6; and their time derivatives are small, certain terms are small enough to be neglected from

the dynamics. In particular, the ATMB¢? term from (6) drops out, and ATMA reduces to ATMA where
M =diag(my, ..., my), and where

n n—1 n—-2 ... 1

The term ATf, due to gravity reduces to —gG(m;)0 where G(m;) is given by

ma mo My My My 0 My } 1
M,
G(m;) = T e . . . (13)
M, 1 - o1

Also, %ATCbé reduces to %ATCbé and %ATCkG reduces to %ATCkO where C is the nxn matrix given by

O
Il

(14)

The follower force term %ATff reduces to 7F6, where

1 1 1 1—-n
1 1 2—n
F= : :
1 -1
0

4.1 Linearized equations

Pulling the previous formulae together, we obtain the following linearized equations of motion

ATNIAG — (_§G + %ATC

when all masses have value m, all damping coefficients
equations reduce further. In particular, G is given by

n n—1 n—2
n—1 n—2
n—2

4.2 Linearized Equations with n =5

1
11
1 1 1 (15)
111 1
1wnn .
k + %F) 6+ 7ATCbi (16)

equal b, and all siffness coefficients equal &, these

1 1

1 1 1

1 1 1 1 (17)
1 1 1 1 1

A sense of the overal structure of the linearized equations can be obtained by examining the case n = 5:

1 2 3 4 5]t 0
1 2 3 4| |2 1 0o
m 1 2 33 21 05 (18)
1 2014 3 21 0,
1[5 4 3 2 1] |4,
1 23 45/ [-1 2 -1 01
b 1 2 3 4 -1 2 -1 0
=- 1 2 3 -1 2 -1 |6y
l 1 2 -1 21| |4,
1 —1] 45
1 23 4 5][-1 2 -1 0:]
i 1 2 3 4 -1 2 -1 0
+ - 1 2 3 -1 2 -1 |65
! 12 1 2| o
1 ~1] |65]
5 4 3 21 1111 -4\ [1 01
gm 43 2 1) 1 1 1 -3 11 0y
— | == 3.2 1| +— 11 =2 111 05
l 2 1| ! 1 -1 1111 0,
1 0 11 1 1 1] |65

4.3 Matlab Code for Generating the Sys

function D=Maciej(n,m,1,b,k,g,a)

tem Matrix

#Maciej.m outputs the linearized dynamics D of a chain of n point masses

Jwhere:
%
%
%
%
%
%

is the value of each mass

is the distance between adjacent masses

is a damping coefficient (damping occurs at each joint)
is a spring coefficient (each joing is sprung as well)
is the value of gravity

is a follower force parameter

POy N O B

Q=tril(ones(n));
P=triu(ones(n));
P(:,n)=[1-n:0]";
C=diag(2*ones(1,n-1),1)-diag(ones(1,n))-diag(ones(1,n-2),2);
A=tril([1:n]’*ones(1,n)-ones(n,1)*[0:n-1]);
G=tril(fliplr(ones(n,1)*[1:n])’);
D=[zeros(n) eye(n);

(A’ %A\ (k/1/m*A’*C- (g/1*G’-a/1/m*xP)*Q) (A’*A)\A’*Cxb/1/m];

5 The Case n =2

When n = 2 the nonlinear equations of motion are given by

0 62 1 [9
ATMA | =ATMB|,. ', “AT(Cb | +Ck |)+, +f 19
|:92:| |:(91 + 02>2:| + l (02 + 92 + g + f) ()
where
[—sin; 0 mq
A — cos 01 0 M — mi (20)
~ | —sinf; —sin(6y +602) —sin(fy + 62) o mo
| cost + cos(01 + 02) cos(6r + 02) my
_Sin 91 0 i sin 91 —sin 01 — Sin(91 + 92)
B_ |cos 01 0 Cc_ |—cos 01 cosby + cos(f1 + 62)
"~ |sin6€; sin(6; + 62) o 0 sin(6y + 02)
[cos @1 cos(01 + 62) | 0 —cos(fy + 63)
mi 0
[|k 1o 0 - 0
b= L b2:| k= |:]{2_ fg =9 mo ff - COS(91 + 92)
0 sin(91 + 92)
We note that in this case
T _|m1 +2mga(1 4 cosfz) ma(l+ cosbs)
ATMA = [ma(1 4 cosfs) meo (21)

ATMB = ms sin 6, E _01]

which is in agreement with a derivation of the dynamics using Lagrange’s equations. These nonlinear
algebraic simplifications probably hold in general, but we haven’t yet worked them out.

5.1 Linearization

A linearization of the above equations assuming uniform mass, stiffness, and damping values gives

P A 1 RS P I o

6 Simulation Code

function planarchain

%planarchain.m solves for the dynamics of a chain of point masses confined
%to a plane. parameters that can be varied include:

)
)
)
h
b
)
)
)

is the number of point masses in the chain

is the value of each mass

is the distance between adjacent masses

is a damping coefficient (damping occurs at each joint)
is a spring coefficient (each joint is sprung as well)
is the value of gravity

is a follower force parameter

PO WO BB

%establish parameters:

n=>5;

m=1e-2;

1=0.1;

b=0.005;

k=0;%0.001;

g=9.8;

a=1.9*mxg; Y%stability threshhold for these values seems to be about 1.9

%establish desired time interval and initial configuration:
time=linspace(0,1,500);

thin=0.0001*ones(1,n); %theta values

thdin=zeros(1,n); Y%theta derivatives

%solve the ODE.
%@chain solves the nonlinear and @linchain solves the linear equatiomns.
if 0 %Solve the nonlinear equations
opt=odeset (’RelTol’,le-4);
[t,state]=ode45(@chain,time, [thin thdin]’,opt,n,m,1,b,k,g,a);
else %Solve the linear equations
opt=odeset (’RelTol’,le-4);
SYS=Maciej(n,m,1,b,k,g,a);
[t,state]=ode45(@linchain,time, [thin thdin]’,opt,SYS);
end
th=state(:,1:n);
thd=state(:,n+1l:end);

Y%animate!
figl=figure;
set(figl,’color’,[1 1 1],’backingstore’,’off’,’Doublebuffer’,’on’);
for i=1:length(t)
%hconstruct a 2xN array of position vectors
x=zeros(2,n) ;
x(:,1)=1x[cos(th(i,1));sin(th(i,1))];
for j=2:n
x(:,3)=x(:,j-1)+1*[cos(sum(th(i,1:j)));sin(sum(th(i,1:3)))];
end
plot ([0 x(1,:)],[0 x(2,:)],’b?,x(1,:),x(2,:),’ro’,
0.5+%[-1 1],[0 0],’k’,[0 0],0.5%[-1 1]1,°k’);
axis equal

x1im([-1*n,1*n])
ylim([-1*n,1%n])
drawnow

end

%Energy Plots:
PE=zeros(length(t),1);
KE=zeros(length(t),1);
for i=1:length(t)
thc=th(i,:)’; thdc=thd(i,:)’;
ph=zeros(n,1); phd=zeros(n,1);
ph(1)=thc(1); phd (1)=thdc(1);
for j=2:n
ph(§)=ph(j-1)+thc(j); phd (j)=phd(j-1)+thdc(j);
end
sines=sin(ph); cosines=cos(ph);
Bl=tril (ones(n,1)*cosines’);
B2=tril (ones(n,1)*sines’);
B=[B1(:) B2(:)]1’;
B=reshape(B(:),2%n,n);
A=[-B2(:) B1(:)]1’;
A=reshape(A(:),2*n,n)*tril (ones(n));
Q=[zeros(1,n);ones(1,n)];
PE(i)=m*g*1* (0.5*n*(n+1)-Q(:)’*A(:,1));
KE(i)=0.5*m*1~2*thdc’* (A’ *A)*thdc;
end
fig2=figure;
set(fig2,’color’,[1 1 11)
plot(time,KE,’r:’,time,PE, ’b:’,time,KE+PE, ’k’)
legend(’Kinetic Energy’,’Potential Energy’,’Total Energy’)
xlabel(’time’)
ylabel(’energy’)

Too o Tos o Too o To o To o o To o o To o o Jo o o Fo o o oo o Fo oo Jo oo o oo oo o o oo o oo o oo o o oo o oo o
function dstate=chain(t,state,n,m,1,b,k,g,a)

fnonlinear equations of motion:

th=state(1l:n); thd=state(n+1:2*n);

ph=zeros(n,1); phd=zeros(n,1);

ph(1)=th(1); phd(1)=thd(1);
for i=2:n

ph(i)=ph(i-1)+th(i); phd(i)=phd (i-1)+thd(i);
end

sines=sin(ph); cosines=cos(ph);
Bl=tril(ones(n,1)*cosines’);
B2=tril(ones(n,1)*sines’);

B=[B1(:) B2(:)]’;
B=reshape(B(:),2%n,n);

A=[-B2(:) B1(:)]1’;
A=reshape(A(:),2*n,n)*tril (ones(n));
%Now for the forces:

C=zeros(2*n,n) ;
C(1:2,1)=[sines(1);-cosines(1)];

C(1:4,2)=[-sines(1)-sines(2) ;cosines(1)+cosines(2) ;sines(2) ;-cosines(2)];

for i=3:n

C(2%i-5:2%i,i)=[sines(i-1) ;-cosines(i-1) ;-sines(i-1)-sines(i);
cosines(i-1)+cosines(i);sines(i); -cosines(i)];
end
fg=[ones(1,n);zeros(1,n)];
fg=mxgxfg(:);
ff=zeros(2#*n,1);
ff(2*n-1:2%n,1)=-a*x[cosines(n) ;sines(n)];
#%Dynamics:
dstate=[thd;
(A’*A)\ (A’ *B*phd. "2+(1/m/1) *A’> * (££+£g+C* ((b/1) *thd +(k/1)*th)))];

Tototo o ToTo o o o ToTo o o o To o o o To o o o To o o o o To o oo oo o o o T oo To o o o o T oo o o o o To o oo o
function dstate=linchain(t,state,SYS)

%linearized equations of motion:

dstate=SYS*state;

