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1 Introduction

Vehicle navigation systems depend on multiple signals and algorithms to keep track of position. Inputs to
a navigation system can include GPS (Global Positioning System) signals, compass signals, and kinematic
signals (e.g., acceleration and wheel position) among others [7]. This information is fed to an algorithm that
may make use of a road database to ensure that the vehicle position coincides with a known road. Information
redundancy is important in navigation because it allows for the combination of the best qualities of each
available signal. For example, GPS signals are accurate but relatively infrequent, while kinematic signals
are always accessible but result in position errors that grow with time. An algorithm that combines these
two signals can enjoy both the short term accuracy of the kinematic data and the long term accuracy of the
GPS data.

In this project, we investigate the analysis of two kinematic signals from a motorcycle: forward speed,
and the signal from a gyroscope mounted rigidly to the motorcycle frame. Our goal is to use these signals to
obtain the position of the motorcycle as it moves over a flat surface. Improvement of the position prediction
using GPS, map-matching, and other techniques is a task we leave for another day. If the kinematic signals
we worked with derived from a vehicle that never tilted side to side or front to back, it would be possible in
theory to use the vehicle speed and gyroscope signals to keep exact track of position. Motorcycle tracking is
challenging principally because of the rolling motion that occurs when a motorcylcle executes a turn. This
is illustrated in Figure 1, where kinematic signals from the same motorcycle run are fed into two algorithms,
one which accounts for roll, and one which does not. The figure shows that the estimate of motorcycle
position deteriorates rapidly if roll is not accounted for. Accounting for roll is obviously crucial to successful
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Figure 1: Axes are in meters. This figure shows path predictions for a motorcycle that travels around a
typical city block. Both paths are constructed from the same speed and a gyroscope signals. The path that
follows the road is generated using an algorithm of our design which accounts for motorcycle roll, while the
path that wanders from the road is generated using an algorithm that does not account for roll.

motorcycle navigation, and so one of our main tasks is to find out how to do this. In the interest of economy
(for possible industrial applications), we consider only the motorcycle forward speed, and the signal from a
motorcycle frame mounted gyroscope. We find that a nonlinear algebraic relation maps from these signals to
an estimate of the motorcycle roll, and that the error associated with this estimate is much smaller than the
error associated with a direct measurement of roll (by the addition of an extra gyroscope to the motorcycle).

Once roll is known, it is possible to estimate the motorcycle path. One of our greatest challenges was
coming up with a reference against which to compare this path estimate. We had hoped that by using
additional sensors we would be able to generate accurate reference paths, however we found that navigation
algorithms involving additional sensors were all too sensitive to signal noise and sensor error to be of any
use. An extensive analysis of this sensitivity is included in Appendices D and E. The motorcycle path we
generate using just two sensors follows the profile of our test track (determined using surveying tools), for



runs lasting around two minutes.

2 Project Objective

We wish to track the motion of a motorcycle over a plane given only its speed u, and the signal w from
a single axis gyroscope mounted rigidly to its frame (see Figure 2). Our main obstacle is that w does not
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Figure 2: Shown above is a motorcycle moving over a plane. A unit vector normal to the plane is given by
E and a unit vector fixed to the frame of the motorcycle is given by n. The motorcycle angular velocity is
given by w, and we define w = w -n and ¥ = w - E. The motorcycle speed u is given by the magintude of
the forward pointing component of the motorcycle velocity u.

equal the vertical component 1) of the motorcycle’s angular velocity (given ¥ and u, the tracking problem is
trivial). For instance, in the case where the gyroscope is aligned with the upward axis of the motorcycle, w
and ¢ are related by )

w = 1 cos(¢), (1)

where ¢ is the motorcycle roll angle (see (A.4)). This equation is strictly true only when the motorcycle does
not pitch (i.e., tilt front to back), and approximately true for standard motorcycle motions (during which
pitch is small). With kinematics given by (1), the tracking problem reduces to determining the roll ¢ in
terms of the two available signals u and w.

2.1 Existence of a Solution

Although ¢ depends on additional parameters besides u and w (such as rider movement, rider and baggage
weight distribution, steering angle, road and tire traction coefficients, wind forces, @ and w, etc.), these
are unavailable to us. Also, it could be that ¢ is best given implicitly as the solution to some differential
equation. Our hope however is that v and w are the dominant variables affecting ¢, and that these map to
¢ according to some algebraic relation ¢ ~ ¢(u,w), which is accurate enough for navigational purposes. The
proposal that ¢ & ¢(u,w) is a leap of faith, motivated by the relative complexity of other avenues of solution,
such as nonlinear state observation techniques. Given any two values of u and w, the various possible values
of ¢ will range between some ¢4, and some ¢;,. It is useful to picture ¢4, and ¢,,;, as surfaces over
(u,w). The best any roll angle algorithm can do is to place ¢ between these surfaces. For a certain class
of motions, (those with particular bounds on forward speed, side slip, rate of turning, and like quantities),
the maximum error in ¢(u,w) will be given by E(u,w) = |®maz (¥, W)-Pmin(u,w)|. This error will increase
with the class of motions under consideration. The possibility of success in using ¢ =~ ¢(u,w) to track a
motorcycle depends on whether or not the tracking error caused by E is acceptable. We will experimentally
verify that tracking based on ¢ =~ ¢(u,w) results in paths that are true to actual road profiles over time
intervals lasting approximately two minutes.

The question of whether or not ¢ can be determined given u and w can also be approached using classical
observability results (this was done by Dan Stevens, and is detailed in [16]). The basic idea is to construct
a system model and determine whether or not an associated observability matrix satisfies certain rank



conditions. This approach is applied to nonlinear systems by linearizing about a point of interest!. Doing
this, Stevens found that ¢ observability was possible when the motorcycle was moving forward perfectly
upright (¢ = 0). We note that states may be unobservable but still roughly approximated to a precision
accurate enough for many purposes.

3 A Simple Model
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Figure 3: We propose that a rotating inverted point mass pendulum captures the essential dynamics of a
motorcycle.

The actual motorcycle roll is only guaranteed to fall between the upper and lower bounding surfaces ¢4z
and @i A roll observation scheme can place the roll estimate ¢ between these bounding surfaces in a
variety of ways, for example, by interpolation on values from a look up table, or by the use of some function
in the arguments u and w. In Appendix C, we generate several such functions from very simple dynamical
systems that loosely resemble a turning motorcycle. The function we end up using throughout our work is
the simplest of all, consisting of an inverted point mass pendulum undergoing steady rotation. A standard
analysis (see Appendix C) reveals that

sin(¢) = ,\%. 2)
It then follows from (1) that
. w
b= —— ®)
1—(A%2)?

We found that we needed to tune the value of gravity g away from 9.8 meters/second?, which we did with
the parameter A, (we used A = 1.1 for every motion we tracked). The need for A is most likely due to
some dynamic effect of the motorcycle that is not accounted for by the system shown in Figure 3. As the
product uw increases to the value g/\, the motorcycle roll angle increases from 0 to 7/2. It follows that
the degeneracy in (3) when uw = g/A will never be encountered under normal driving. The equilibrium
position of the inverted pendulum is unstable, so the dynamics of ¢ away from its equilibrium point don’t
carry over to the dynamics of the motorcycle (which is stable under the control of a driver). A flowchart of
the algorithm that follows from (3) is given below. The algorithm takes the signals 4 and w as input and
outputs the Cartesian coordinates & and y of the motorcycle path.
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Flowchart 1: Basic Algorithm.

IThis linearization causes conclusions not to carry over to the nonlinear system in some theoretical cases but in practice
they almost always do.



4 Tracking Motorcycle Models

We now test the performance of the Basic Algorithm (Flowchart 1) by using it to track two different motor-
cycle models through a variety of maneuvers. (In this preliminary analysis, the models are used as stand-ins
for an actual motorcycle). The first model is due to Cossalter et al. [4], and is referred to as the CDLF
model after its authors. The second model is generated by Stevens [16], using the ADAMS software package.
As either model is made to execute a maneuver such as rounding a corner, the resulting forward speed signal
u and gyroscope signal w are collected and fed into the Basic Algorithm (Flowchart 1). The success of the
algorithm is measured by how closely its output matches the path traced out by the model. It will be seen
below that the algorithm performs extremely well with both models, which we note differ significantly from
each other.

4.1 Tracking the CDLF model

The CDLF model is derived from first principles in Appendix A of this report. The model consists of a rigid
frame/rider mass and two tires as shown in Figure 4. A proportional control scheme realized in simulink is

Figure 4: Diagram of the CDLF motorcycle model.

used to get the model to execute a weaving motion. The u and w signals from this motion are then fed into
the Basic Algorithm (Flowchart 1), and the resulting path is compared to the path of the model (Figure 5).
The two paths are extremely close, and so the Basic Algorithm successfully tracks this motion of the CDLF
model. The tracking of other CDLF model motions was equally successful.

4.2 Tracking the ADAMS model

A multibody motorcycle model was developed by Dan Stevens [16] using ADAMS software. A diagram of
the model is given in Figure 6, and tracking results as it is driven around a typical city block are given in
Figure 7. As with the CDLF model, the Basic Algorithm (Flowchart 1) gives excellent results.

5 Tracking Actual Data

Having verified the basic algorithm on two models, we now turn to the analysis of data from an actual
motorcycle. A BMW K1200 motorcycle (see Figure 8) was instrumented with sensors? and driven around a
167 by 124 meter block at the Richmond Field Station (UC Berkeley) at speeds ranging from 20 to 35 km/h.
Representative data from a test run is given in Figures 10 and 9. Our original plan was to use the Basic

2 Adding instrumentation to the motorcycle and extracting signals from its native systems took a lot of work. This was
accomplished by Avery Jutkowitz and Josh Coaplen, and is described in the report [8]. We used the Crossbow IMU300CC-100
sensor package of three accelerometers and three gyroscopes to take part of our data.
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Figure 5: Tracking results for the CDLF Model. A set of time varying states is fed into the CDLF model as
realized in Simulink. These cause the model to trace out a path (shown as a solid line). Over this path, the
speed u is approximately 9 meters/second, and the maximum roll angle ¢ is 25°. Given u and w, the Basic
Algorithm (Flowchart 1) predicts a path (shown as a dashed line). The fact that the two paths are almost
indistinguishable shows that the Basic Tracking Algorithm performs very well.

Figure 6: Diagram of the multi-body motorcycle model constructed using ADAMS.
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Figure 7: Tracking results for the ADAMS Model. The model is made to drive around a city block as
detailed in [16]. During this motion, the model speed u varies from 6 meters/second during turns to 10.5
meters/second along the straightaways, and the roll angle ¢ reaches a maximum of 20° during turns. The
path predicted by the Basic Algorithm in Flowchart 1 is shown as a dashed line, and as with the CDLF
model, matches the actual model path very closely.

Figure 8: This is the BMW K1200 motorcycle we used for our tests.
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Figure 9: This is a generic set of accelerometer data (in units of meters/seconds? versus seconds), taken as
the motorcycle was driven around a 167 by 124 meter block at the Richmond Field Station. The dotted line
shows raw data and the solid line shows the result of passing this data through a Butterworth filter.

5 I I I I I I I I I
1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

5 I I I I I I I I I
1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

05 L L L L L L I I I
1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

Figure 10: This is gyroscope signal data (in units of radians/second versus seconds), taken during the same
run as the accelerometer data in Figure 9. As in Figure 9, we superpose raw and filtered signals, shown as

dotted and solid lines respectively.



Algorithm in Flowchart 1 to generate a path given the motorcycle’s forward speed and the signal from an
upward pointing gyroscope fixed to the motorcycle, and to compare this path to an accurate reference path
generated using signals from an array of three accelerometers and three gyroscopes. As it turned out, the
path generated by the Basic Algorithm was more accurate than any path we could construct using additional
sensor signals. To construct a reference against which to judge the Basic Algorithm, we resorted to a careful
measurement, of the test track using optical surveying devices.

5.1 A Complete Navigation Algorithm

The general problem of navigating with three accelerometer and three gyroscope signals is discussed in
Appendix D. The calculations needed to get from the sensor signals to a set of inertial frame velocity values
and Euler angles are complicated and involve feedback that renders them extremely sensitive to accelerometer
and gyroscope noise and bias. These calculations are shown in the Complete Algorithm (Flowchart 2 below)
from Appendix D.

‘ Sensor Output: w;, s; ‘
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Flowchart 2: The Complete Algorithm.

We find that this algorithm is too sensitive for the data from our sensors. Our fundamental problem
is integration error. Roughly speaking, input signal bias of magnitude C is reflected in the output of a
calculation involving n series integrations as an error term with the form Ct". Feeding integration results
back into the integral results in error terms of the form Ce!. The bias in our sensors is such that the output
of the Complete Algorithm becames nonsensical after only a second or two while the maneuvers we are
interested in tracking last at least several seconds.

5.2 A Simplified Algorithm

After becoming aware of the difficulties with using the Complete Algorithm, we searched for ways to simplify
our calculations. In hindsight, something as general as the Complete Algorithm (which accommodates
motions as complicated as that of a body tumbling through space) is inappropriate for the simpler motion of
a motorcycle®. The fact that a motorcycle generally maintains contact with the (level) ground and pitches
very little gives us constraints with which to simplify the navigation process. For instance, in the error
analysis of the Complete Algorithm (in Appendix D), we note that velocity error is dramatically reduced
by not accounting for side slip, vertical components of the motion, or pitch, all of which are nominally zero.
After these changes, the navigation process reduces to the Simplified Algorithm, shown in Flowchart 3.

3All signals are noisy and biased, and algorithm sensitivity to noise and bias increases as the number of integrations in the
algorithm increases; for practical engineering it is generally a good idea to make things as simple as possible.

10
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Flowchart 3: The Simplified Algorithm.

Even after this simplification, bias in the signal from the forward pointing accelerometer caused its integral
(our velocity signal) to quickly become unreasonable (see Figure 11), and to get a meaningful velocity signal
(Figure 11), and meaningful Euler angles (Figure 12), we had to post-process our data. We justified these
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Figure 11: Velocity profile constructed from data in Figures 10 and 9. The dotted line is our initial result,
obtained by integrating the filtered signal from the forward pointing accelerometer. We know that the
motorcycle is stationary at the beginning and end of an interval of forward motion, so we apply a linear
adjustment to the dotted line to get the reasonable velocity signal shown as a solid line. We also know that
the motorcycle is at rest before and after the middle part of the test run, so we set the velocity to zero during
these periods.

adjustments by the fact that bias was apparent in our data and that they resulted in output signals closer
to the motorcycle motion we observed during a test run. Had the resources been available to invest in more
expensive sensors, they likely would have provided signals closer to our adjusted signals.

5.3 Testing the Basic Algorithm by Visual Inspection

The trend of improved performance with algorithm simplification does not stop with the Simplified Algorithm
in Flowchart 3. Evidence that the Basic Algorithm which we set out to test in the first place outperforms the
Simplified Algorithm is given in Figure 13. In this Figure, the motorcycle roll as calculated by the Simplified
Algorithm wanders from zero during straight forward portions of the motorcycle run while the magnitude
of the roll predicted by the Basic Algorithm does not (we observed that the actual motorcycle roll was very
close to zero during these portions of the testing).

Coming up empty handed in our search for a standard against which to compare the Basic Algorithm?,
we used optical surveying instruments to measure the rectangular motorcycle test track, which we find to
be 167 meters by 124 meters, with a width of 7.3 meters. We then superposed an image of this track on the
output path of the Basic Algorithm, as shown in Figure 15. The quality of the Basic Algorithm is measured

4A real time GPS signal recorder might have served this purpose.

11
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Figure 12: Euler angles (in radians) as functions of time (in seconds), recovered from the filtered gyroscope
signals in Figure 10, after adding small constant values to correct for sensor bias. Note the difference in scale
between the plots.
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Figure 13: This Figure superposes the roll signal from the middle graph of Figure 12 (shown here as a solid
line), and the magnitude of the roll angle ¢ predicted by the Basic Algorithm from Flowchart 1 (shown as
a dotted line). The graph units are radians versus seconds. During straight line portions of the test, the
motorcycle roll angle is approximately zero. With respect to this important aspect of the motion, the results
of the Basic Algorithm are closer to the actual motion of the motorcycle than the roll angle predicted by
Flowchart 3.
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Figure 14: This Figure compares the paths generated by the Basic Algorithm in Flowchart 1 and the
Simplified Algorithm in Flowchart 3. The Figure axes are in meters. Both paths are constructed using the
corrected velocity signal (from Figure 11), and the Euler angles shown in Figure 12. Both paths exhibit the
same order of accuracy, and so it is inappropriate to use one as a basis for judging the other.

by how well its output remains on the motorcycle test track. Although there is consistent corner cutting
which we have been unable to explain, the Basic Algorithm outputs a path that stays true to the test track
for runs lasting as long as several minutes.

A good velocity signal is instrumental in generating the results shown in Figure 15. Although seemingly
a straightforward matter of tapping into the motorcycle’s circuitry for the wheel position signal, obtaining a
good velocity signal proved challenging®. It is interesting to compare the velocity signal from the motorcycle
circuitry to the integral of the forward pointing accelerometer (see Figure 16).

5.4 Refining the Basic Algorithm

In this section we note a refinement of the Basic Algorithm that is explained in detail in Appendix E. In
our refinement we take into account the fact that velocity will usually be computed from wheel position
data, and that minor improvements in performance are possible if the roll of the motorcycle is accounted
for when these computations are performed. These changes are reflected in Flowchart 4 below, where ws is
a gyroscope signal and ¢; is a stream of discrete time values, each corresponding to an angular increment ®
in the position of the rear motorcycle wheel.

t; ti

L ¢ ¢| z=Y R($)Bcos(y) =
vi = vi(ti, P) v; | y =) R(¢)®sin(y) |~ Y

. 1)
¢ = d(vi,ws) | 9
w3 s, ¥ = wa sec(q) I

Flowchart 4: The Refined Algorithm.

6 Conclusions and Further Work

Our motorcycle tracking goal is accomplished, as we have generated an algorithm that produces paths true
to actual motorcycle trajectories over time intervals lasting a couple of minutes. The algorithm does not

5For details on the circuit needed to obtain the speedometer signal, see the report (8]

13
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Figure 15: Basic Algorithm tracking results for the BMW K1200 motorcycle as it is driven around the test
block at the Richmond Field Station. In the three tests on the left the motorcycle is driven clockwise (as
seen from above) while in the three tests on the right, the motorcycle is driven counter-clockwise. In all cases
the motorcycle speed was roughly 7 meters/second. In every case, w is corrected for bias by subtracting
the average of w over a small initial time interval from the entire signal. (Over this interval, w should be
approximately zero due to lack of motion by the motorcycle). The velocity v is measured directly using
Coaplen’s circuit.
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Figure 16: A comparison of the velocity signal from Coaplen’s circuit (solid line) to the velocity signal
obtained from the forward pointing accelerometer (dotted line). A linear correction has been applied to the
dotted line, similar to the one shown in Figure 11. The signal from Coaplen’s circuit is closest to the velocity
observed by the motorcycle rider. We note that Coaplen’s circuit sometimes returns a residual velocity signal
after the motorcycle has come to rest (as shown above). This effect is discussed in [8].

depend on parameters such as the motorcycle mass and traction coefficients, and so it is robust to variability
in these quantities. Because it involves no integration, the algorithm prediction of roll is better than direct
measurement, of roll using a forward pointing gyroscope.

Further work on this project could be done to extend the algorithm to non-flat surfaces, and to implement
the algorithm in real time (a step in this direction is given by the Refined Algorithm in Flowchart 4).
Performance might be improved by using a set of correction factors that are activated at different rates and
speeds (i-e., A = A(u,w)). It seems likely that A at very low speeds will differ from A at very high speeds,
because at low speeds, steering geometry becomes more important, (and the motorcycle acts less like an
inverted pendulum). These and other algorithm improvements will be difficult to study without knowledge
of the actual motorcycle trajectory. Although the surveying techniques we used were sufficient for us to
draw important conclusions, the reference trajectories we constructed were perfect rectangles, and omitted
details of the motorcycle motion during a turn. Improvements in trajectory resolution could be achieved
using real time GPS corrections. This however is an entire set of pandora’s boxes, enough to fuel several
masters projects.

Josh Coaplen and I have noted a paradigm shift appropriate when INS is used in conjunction with map
matching. Instead of providing position estimates in the short term that are corrected periodically by signals
from GPS, the INS would only need to make available the total distance traveled, in a direction given by
the road or freeway the motorcycle is known to be traveling on. This total distance would be the integral
of the speedometer signal (equivalently a summation of wheel position counts), mitigated by the amount of
weaving the vehicle does (measured by the upward pointing gyroscope). Of course, when an intersection
or road fork is anticipated (by the map matching software), INS would switch to provide full short term
position output.

15



A Dynamic Model of a Motorcycle

This model follows V. Cossalter et al. [4], and is referred to in this report as the CDLF model.

A.1 Overview

Our model consists of two wheels pivoted to a rigid frame which includes the motorcycle rider. Frame
compliance (shocks) and in particular steering are neglected. The traction between the tires and the road
does not follow easily from traditional control inputs such as steering torque and slight shifts in driver weight,
so we use traction resultants directly as inputs, and assume that the driver is able to create them. We note
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Figure 17: Schematic of the motorcycle model.

that in Figure 17, frame dimensions are taken with respect to the center of mass of a collection of three
bodies: the motorcycle frame/rider, the front tire, and the rear tire.

A.2 Tires

The tires in our model determine the position and orientation of the motorcycle as if they were infinitly
thin rigid disks. Traction forces and moments are applied to the tires at points in the plane of the road
as shown in Figure 18. Justification for neglecting tire thickness in the model kinematics follows from the

Figure 18: Here we illustrate our assumptions about how the motorcycle tire contacts the ground. Changing
¢ causes the tire to pivot about the point P as if hinged there. Traction forces are applied at point 7', which
is a distance rsin ¢ from P, (with 7 the minor radius of the toroidal tire).
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small change in position of the base point of a rigid torus as the torus rolls without slipping in its facewise
direction through an angle ¢ (see Figure 19). Note that e, and e, are both very small (e, is O(r¢?®) and e,

¢
Torus Cross Section \/;'\ Detail View

ez =1¢ — rsin(g)

ey =1 — 1 cos(Q)

Figure 19: When ¢ = 0, the torus contacts the ground at point P. In the diagram above, the torus rolls
over the ground as ¢ increases. The difference between this rolling and simple pivoting of the torus about P
is measured by e, and e,.

is O(r¢?)), and that when the torus is compliant (as it is with a real motorcycle tire), e, is reduced further
still. Although tire thickness can be neglected in the model kinematics, it must be accounted for in the
location of the traction resultants. The lateral displacement value r sin ¢ was chosen because it locates the
point of contact of a rigid torus with the ground (as shown in Figure 19).

A.3 Bases

A body fixed basis {b;} is defined using the fixed basis {E;}. The vector Es points down; a yaw rotation 1
about E3 gives the basis {a;}; a roll rotation ¢ about a; gives the basis {b;}. The vector b; points in the
forward direction of the motorcycle and is horizontal.

a; cos(yp) sin(y) O] [Ey
ax| = | —sin(yp) cos(v) 0| |Eaf, (A1)
as 0 0 1] |Es
b1 1 0 0 i _al
bo| = |0 cos(¢) sin(d)| |az] . (A.2)
bs 0 —sin(¢) cos(¢)| |as

Whence we see that

b, cos(¢) sin(1)) 0 E;
ba| = | —cos(@)sin(¢p)  cos(@) cos(vy)  sin(g) | [Ez] . (A.3)
b; sin(¢) sin(y))  —sin(¢) cos(y) cos(¢)] |Es

A.4 Angular Velocities

The angular velocity of the motorcycle frame is given by

w = ¢by + YEs
= d)bl + v,[r sin(¢)bs + @b cos(¢)bs. (A.4)
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E,

as ax

Figure 20: Illustration of various bases and angles used in the model.

In prescribing the front and rear wheel angular velocities, ws and w, respectively, we assume rolling without
slipping of the tires in the by direction. Note however that sliding in the ay direction is not prohibited as
the velocity of the rear wheel contact point can have an a, component.

Wr=w-— b, (front wheel),

T+ Tt

W, =w — b, (rear wheel). (A.5)

Tr + Trt

In this model, we neglect the change in effective tire radius with roll of the motorcycle.

A.5 Preliminaries
In the development that follows, we’ll need {b;} and {b;}. Because {b;} is body fixed, b; = w x b;:

by = 1) cos(¢)ba — 1) sin(¢)bs,
by = —¢) cos(¢)by + ¢bg,

Bg = '(p sin(¢)b1 — ¢b2 (A6)
The rates {b;} follow easily:
b1 = by (4% by = b1 (2¢¢sin(¢) — 1) cos(¢))
+ by (¢ cos(¢)) + by (—¢* — 1* cos(¢))
+bs(~¢sin(9)), +bs(¢ + ¥ sin(g) cos(9)),

by = by (¢ sin(¢) + 206 cos(¢))
+ b (=6 + ¢ sin(g) cos(¢)) (A7)
+ b (—cot ¢” — ¢ sin®(9)).
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A.6 Overview of the Dynamics

We model the motorcycle as a collection of three essentially rigid bodies (i.e., the frame and the two tires).
The dynamics of our model are developed with respect to x, the center of mass of this collection, and follow
from standard balances of linear and angular momentum. The forces and moments acting on the motorcycle
are:

S; = Syby the forward force acting on the front tire,
S, = S,b;y the forward force acting on the rear tire,
F; = Fyay the lateral force acting on the front tire,

F, = F,.as the lateral force acting on the rear tire,
N; = —Nyag3 the vertical force acting on the front tire,
N, = —N,a3 the vertical force acting on the rear tire,

M; = Myaz the moment acting on the front tire,
M, = M, a3 the moment acting on the rear tire,
F, = —F,b; the aerodynamic drag force,
F, = mgas the gravitational body force. (A.8)

Keep in mind that the motorcycle is a collection of three rigid bodies; the mass m for instance in F is the
sum of the masses of each of three bodies. As noted in the overview, the forces S¢, S;, and Fy are control
inputs for the model. The moments on the tires are dominated by their ag components.

A.6.1 A Balance of Linear Momentum

A balance of linear momentum is given by
F = m, (A.9)

where
e F is the sum of all external forces acting on the motorcycle,
e m is the mass of the motorcycle,
e X is the acceleration of the motorcycle’s center of mass.

We denote the velocity of the rear wheel kinematical contact point with the ground by v = ua; + vas. It
follows that . .
% = uby + v(cos(¢)bs — sin(¢)bs) — hbs + bb;. (A.10)

This vector can be differentiated:
% = a; (i — v — b)? — hy) sin(@) — 2hip¢ cos(p))

+ ay(u) + 0 + bip + hé cos(¢) — hé? sin(¢p) — hip? sin(¢)) (A.11)

+ az(hsin(¢) + he? cos(9)).
Resolving F against the {a;} basis and equating components with m%, we find that

S;+ 8, — F, =m(i— v — b)? — hapsin(¢) — 2hepd cos(¢)),
Fj + F. = m(ut) + 0 + b + ho cos(¢) — hd? sin(¢) — hep? sin(a)),
mg — Ny — N, = m(hésin(¢) + he? cos()). (A.12)
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A.6.2 A Balance of Angular Momentum

A balance of angular momentum is given by

d =
M= (Irw +3,0, +3pw; +30), (A.13)
where M is the net external moment on the motorcycle with respect to x. The symbols Jp, J,, and Jy
respectively denote the inertia tensors of the frame, the rear wheel, and the front wheel about their respective
centers of mass. As discussed in Appendix B, J is given by

j = Zm,(l(ﬂz ST — T ®7Tz')), (A14)

with summation over ¢ € {F,r, f}. The vector m; goes from the center of mass of all three rigid bodies to the
center of mass of the it? rigid body, and m; is the mass of the i*? rigid body. The wheel centers of mass are
indistinguishable from motorcycle frame material points, and so @ = w. Furthermore, b, is a principle axis
of both Jr and J , 50 letting J denote the sum of Jr and J , we have Jpw + J& = Jw where the components
of J with respect to the {b; ® b;} basis are given by

Ji0 Jy
J=|0 5 0 . (A.15)
Ji 0 Joly g,

With these changes, (A.13) becomes

d d ul,, d uley
M=2 -2 by) — = b Al
a9 -5 (n T 2) dt (rf Yo 2) ’ (A.16)

where I., and I.; denote the rear and front wheel moments of inertia respectively about their axes of
symmetry. The vectors k, and ky going from x to the rear and front wheel points of force application
respectively are given by

K, = 74 sin(¢) cos(d)ba — bby — (1 — 77 c0s?(¢) — h)bs,
k; =7y 5in(¢) cos(@)ba + (p — b)by — (rg — 754 cos’(¢) — h)bs. (A.17)

The net external moment M on the motorcycle is therefore given by

M=M, +M;+k, x (S, +F, +N,) +k; x (S +Fs + Ny)
= b1((rre — h)(F} cos(¢) — Ny sin(¢)) — rreFy cos(9) . ..

+ (rg¢ — h)(Fy cos(¢p) — Ny sin(¢)) — 4 Fy cos(¢))

+ ba (M, + My)sin(g) . ..
+ S (h — 1t + 1rp¢ c08* (¢)) — b(F, sin(¢) + N cos(¢)) . ..
+ 87 (h = s + 750 cos”(9)) — (b~ p)(Fy sin(¢) + Ny cos(9)))

+ b3 (M, + My) cos(¢) ...
— b(F,. cos(¢p) — N, sin(p)) — Sypry¢ sin(¢) cos(¢) . ..
— (b—p)(Fy cos(¢) — Nysin(¢)) — Syry. sin(¢) cos(¢)). (A.18)

Expanding the right side of (A.16) gives

M = by (J1$ + Juih cos(¢) + (J5 — Jo)y* sin pcos ¢ + Lurh cos(¢))
+ by (S sin(¢) + Jyh? cos® (@) — Jud? + (Ji + Jo — J3)vbdcos(¢) — L)
+ b3 (Jag + Jatp cos(p) — Juip? sin(¢) cos(¢) + (J2 — J3 — J1)vgsin(g) — Lug), (A.19)
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where

[ ) S (A.20)
Tr 4+ Trt e+ Tyt

Equating the above two expressions for M and isolating components gives three scalar equations that impose
a balance of angular momentum on the motorcycle.

A.6.3 Tire Forces

Following Cossalter et al. [4], the lateral force F,. on the rear tire of the motorcycle evolves according to
ZFy + Fr = Cid + Cag, (A.21)

where o, is the tire relaxation length, C; and Cy are constants, and A = arctan(v/u) is the side-slip angle.

A.7 Reduction of the Equations

Setting 7 and 7,4 equal to the common radius r; allows us to solve for ¢ and ¢

) —Ax Al B 1
L = A.22
[(;5 —Azn Aun] [Bz] A1 Asy — A1p Ay (A-22)

where

A1 = Jycos(¢)
Aso = Jy cos(9)
Ayg = Ji + mhsin?(¢)(h — )
Aoy = Josin®(¢) + Js cos®(¢) — hI, sin®(¢)
By = —h(F, + Fy) cos(¢) + m(g — h¢? cos(#)) sin() (h — )
= (Js = J2)i)* sin(9) cos(¢) — uleth cos(¢)
By = (S, +S; — Fa)(re — h— %)sinqb—i—Frb— Fi(p—1b)

+ (Jo — J3)2¢hsin ¢ cos ¢ + Jud? sin(¢) — ul, ¢ cos(¢)
— I sin(¢) (+v9) + bi)? + 2hah¢ cos(¢)) — My — M, (A.23)

A.8 Differences with Cossalter et al.

The preceding model is based on a set of equations given by Cossalter et al. [4]. In particular, the derivation
given in this appendix is original. Correspondence between O’Reilly and Cossalter revealed that Cossalter’s
equations were obtained with the aid of a software package. A close comparison of Cossalter’s equations
and ours reveals only minor differences, which are attributable to different assumptions on the road contact
geometry of the motorcycle tires. Also, our equations include vertical moments acting on the motorcycle
wheels as a result of their contact with the ground.
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B Background Dynamics

B.1 Balance of Angular Momentum With Respect to an Arbitrary Point

In this section we establish some results pertaining to the dynamics of rigid bodies. Let B be a rigid body,
let the origin locate a fixed point in space, and let x4 locate an arbitrary point in space. The moment M,
on B about the origin caused by a set of forces {f;} acting on the body is given by

MO = in X fi, (Bl)

where x; locates the point on 0B where f; is applied. The moment M 4 on B about x4 due to {f;} is given
by

My = Z(Xz —XA) x f;
:MO—xAfoi. (B.2)

The angular momentum Hy of B about the origin is defined by

H, = /B (x % %) pdb, (B.3)

and the angular momentum Hy4 of B about x4 is defined by

HA = /B((X—XA) X )'c)pdv
=Hy—x4 x G, (B.4)

where G = mx with m equal to the mass of B. When x4 equals the center of mass X of B;, H4 becomes
the angular momentum of B; about its center of mass, and is denoted H giving

H=H,-%xG. (B.5)

Using the Euler postulate My = Hy to combine (B.2) and (B.4), and using Y.f; = G (the other Euler
postulate) to eliminate terms from the resulting expression, we find that

MA:HA + x4 X G. (B.G)

We note that when x4 is the center of mass of B, G = mX4 and so X4 X G = 0, leaving us with M = H
where H has been introduced as our notation for the angular momentum of B about its center of mass, and
where we let M denote the moment on B about its center of mass.

B.2 A Collection of Constrained Rigid Bodies

We now concern ourselves with a collection of n rigid bodies, each denoted B;, constrained so that their
centers of mass are fixed distances from each other. The angular momentum balance (B.6) for each B; is
given by

> Mui = Hai + %45 x Gy, (B.7)

where the point x4 has been chosen to be the center of mass of the collection. We now sum the momentum
balance equations (B.7) for all B;’s. The fact that x4 is the same in every balance equation (B.7) relieves
us of having to consider moments acting on the bodies which arise because of constraints. (Such moments
acting on one body will necessarily act on another body in an equal and opposite manner). Letting M
denote the net external moment acting on the collection of bodies with respect to x 4, this summation takes
the form

d .
M= — (Hai+---+Han) +%4 % (Gi+---+Gy). (B.8)
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The term above involving the summation of G;’s vanishes because this sum equals the total mass of all the
bodies multiplied by X 4. Letting w; = X; — x4, we use (B.4) and (B.5) to express the summation of H4;’s

in (B.8) as

It is a fundamental result in mechanics that H; = J;w; where J; is the inertia tensor of B; about its center of
mass, and where w; is the angular velocity of B;. The derivation of this result is similar to the development
we give now of the summation of 7; x G; terms in (B.9). Because the centers of masses of all the bodies B;
are fixed distances from each other, we have ; = @ X m;, where @ is the angular velocity of the collection
of rigid body mass centers, and

Y omixGi=)_ mx (@ x m)m;
=Z(&:(7ri-7ri) — (@ - 7)) my
I:ZTHZ (I(ﬂ'i-ﬂ'i) _7\'i®7|'i) w

(B.10)

where the newly defined tensor J is to a collection of point masses m; at points X; of a rigid spatial lattice
what J; is to the mass in the rigid body B;. Compiling our results, (B.8) becomes

M = %(ja) +)° %(Jiwi). (B.11)
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C Simple Models

C.1 An Inverted Point Mass Pendulum

Figure 21: Schematic of the inverted pendulum motorcycle model.

Our interest is in the time evolution of ¢ in the system shown above. The horizontal beam of length [; is
spun about the vertical at the rate ¥)(¢). The rod of length [» is pivoted to this beam and rotates through
the angle ¢. The point mass (shown as a sphere) at the end of this rod is subject to constraint forces and
to a downward acting gravitational force. It can be shown that the parameter ¢ evolves according to

(}Szgslm¢—¢zll_ll2sm¢cos¢. (C.1)
2 2

We now consider the special equilibrium case, in which ¢ = 0. This condition causes (C.1) to reduce to

72

sin ¢ = LT cos ¢, (C.2)

where L = l; — I3 sin ¢. The point mass velocity u under the equilibrium condition is depicted in the diagram
above. Noting that the magnitude u of this vector is given by u = L, and that the value w that would be
measured by a gyroscope aligned with the rod axis is given by w = 1 cos ¢, we can rewrite (C.2) as

uw
ing = —. C.
sin ¢ p (C.3)

We note that the equilibrium values of ¢ that interest us are unstable. Hence, although (C.3) may offer a
reasonable prediction of motorcycle roll, it cannot be used to predict variation in ¢ about the equilibrium
value (unless perhaps we add a controller that mimics the efforts of the motorcyclist to keep the motorcycle
tilted at the proper angle).

C.2 An Inverted Rectangular Slab

Here we model the motorcycle not as a point mass but as a rigid plate, as shown in Figure 22. A balance of
angular momentum of the plate reads as

ZMy =H, + (x —y) x m¥, (C4)

where m is the total mass of the plate. Each of the terms in this expression is straightforward to develop.
Assuming ¢ and ¢ are both constant (i.e., that an equilibrium value of ¢ has been found corresponding to
the unchanging value of v, the plate angular velocity is given by w = 1¥es. The plate angular momentum
H, about its center of mass is given by Jw where the components of the inertia tensor J are given with
respect to the {e; ® e;} basis by

cos¢ 0 sing A 000 cos¢p 0 —sing
[J]= 0 1 0 0 X O 0 1 0 . (C.5)
—sing 0 cos¢ 0 0 A sing 0 cos¢
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Figure 22: Schematic of the inverted plate motorcycle model. The plate is pivoted to a beam that rotates
about the vertical. The basis {e;} is fixed to this beam. The plate center of mass is given by x, and the
intersection of the plate pivot axis with the plane spanned by {e;,e3} that also contains x is given by y.
Note that x and y are both material points within the plate.

Differentiating H,, (and noting that w = 0), we find that

H, = w x Jw =¢>(A3 — A1) sin ¢ cos ¢e,. (C.6)
Next, we note that .
(x —y) x m¥ = —ma)?l115 cos pes. (C.7)
Substituting (C.6) and (C.7) into (C.4), and denoting w = 1) cos ¢ and u = tl,, we find that
sin ¢ = U9 4 w2 A1 = As tan ¢. (C.8)
g mgl

C.3 Avery’s Minor Radius Accommodation

We now consider a model that accounts for the minor radius of the (approximately toroidal) tires of a
motorcycle. This model was suggested by Avery Jutkowitz and is shown in Figure 23. For this model a

Figure 23: Schematic of Avery’s motorcycle model. This model is exactly like the inverted point mass
pendulum model except that instead of pivoting about a definite axis, the inverted pendulum engages the
horizontal beam through the disk of radius r, which rolls without slipping. The disk is constrained not to
tilt side to side, or to roll in anything other than a straight line in the direction of the beam axis of rotation.
We let Ry denote the value the dimension R would have if ¢ were to equal 0.

Lagrangian derivation of the dynamics is easiest. With 4 constant and with ¢ = 0, the kinetic energy T and
potential energy U associated with the point mass m are given by

T = Sm((Ro —r — Lsing))?

U =mglcos¢ (C.9)
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Setting L = T — U and recalling that for this system, % (g—g) - % = 0, we immediately find that

uw r
né— Y
sin ¢ p ( +lcos¢

) (C.10)

where we have introduced w = 1) cos ¢. We note that as r — 0, (C.10) approaches (C.3) as expected.
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D Inertial Sensor Signal Processing

In this Appendix, we address tracking the motorcycle using traditional methods of inertial navigation. In
theory, given three gyroscopes and three accelerometers, it is possible to determine the orientation and
position of an object moving in the presence of a gravitational field. First, data from the gyroscopes is
integrated to provide the object’s orientation. Then, given the gravitational force acting on the object
(which is generally a function of the object’s position), as well as data from the accelerometers, it is possible
to determine the object’s acceleration. Integration of the acceleration yields velocity and position.

When the moving object in question is a motorcycle being driven over a (flat) road, the fact that velocity
usually occurs in the forward direction of the motorcycle makes it advantageous to work with a basis {a;}
that is aligned with the motorcycle frame, rather than with respect to one which is immobile. Size and
cost considerations for a motorcycle mounted system cause us to use the “strap-down” approach, in which
gyroscopes and accelerometers are fixed rigidly to the object being observed. Also, because we intend to use
INS as an interpolation device during the brief time intervals between GPS and map matching corrections,
considerations such as the curvature and rotation of the Earth, and variation in the Earth’s gravitational
field will not concern us. We may think of motion as occurring over a flat inertial plane, perpendicular to
a constant downward pointing gravity vector. Although we eventually intend to account for variability in
terrain, our present analysis is restricted to the simplified case of motion over a perfectly flat level surface.

D.1 Preliminaries

Different bases are involved in our analysis and it is helpful to work out the relationships between them
ahead of time®. The output axes of the sensor are presumed to be aligned with the orthonormal “platform
fixed” basis {e;}, which we note is also body fixed because the sensors are “strapped down” to the frame of
the motorcycle. An inertial basis {E;} is chosen so that the acceleration due to gravity is given by g = gE3
(the local ground tangent plane is treated as inertial and Ej is in the downward direction). The orientation
of {e;} with respect to {E;} can be parameterized by a 3-1-2 sequence of Euler angle rotations. First, we
rotate the basis {E;} through a “yaw” angle ¢ about the E3 axis, generating the new basis {a;}:

a; cosv siny 0| [E;q
as| = |—siny cosy 0| |Eof . (D.1)
as 0 0 1 E3

Next, we rotate the basis {a;} through a “roll” angle ¢ about the a; axis, generating the new basis {b;}:

bl 1 0 0 a
ba| = |0 cos¢ sing| |as| . (D.2)
bs 0 —sing cos¢| |as

Finally, we rotate the basis {b;} through a “pitch” angle § about the b, axis, generating the {e;} basis:

e cosf 0 —sinf| |b;
el= 0 1 0 by | . (D.3)
es3 sinf 0 cosf bs

Combining the three equations above, we find that

e (costpcosf —sintsin psinf) (sint cos@ + cosysingpsinf) —cos¢sing| [E;
e | = — sin1 cos ¢ cos 1) cos ¢ sin ¢ E,| . (D.4)
es (cosysin@ + sinysingpcosfh) (sin@sinf — cos psinpcosf)  cos@cosf E3

6 All the bases and Euler angles used in Appendix A are used again here, with their relationship to the motorcycle maintained.
A diagram of these bases and angles is given in Figure 20.
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D.2 Gyroscope Output

A standard result [13] allows us to write the angular velocity w of the sensor array as
w = ¢E3 + d)al + éez. (D5)

Using (D.3) and (D.4) and writing w = w;e;, we find that

w1 —cos¢sing cosf 0 1,b
wa| = sin ¢ 0 1| (¢, (D.6)
ws | cospcosf sinf 0] |4]
and inversely that ]
) [—secosind 0 secpcosf | [wr
| = cosd 0 sin 4 wa | . (D.7)
é | tangsind 1 —tan¢cosf]| |ws

Equation (D.7) will be referred to later on in the abbreviated form N = E;jw;. We assume that the gyroscope
portion of the sensor outputs the signals w;. Knowing the Euler angles 19, ¢o, and 8y at an initial time
to, and w;(t) at every time t > tg, we can integrate (D.7) to determine ¢(t), ¢(t), and 6(t). These angles
parameterize the sensor array’s orientation.

D.3 Accelerometer Output

The accelerometer can be thought of as consisting of a test mass m suspended in an enclosure by a system
of springs of stiffness k, and dampers with dissipative constants ¢. (Actually, the accelerometer probably
consists of three one dimensional spring mass damper systems in an orthogonal array, however thinking of
the accelerometer as a single mass suspended in space streamlines our discussion). Let x be the position

Suspended test mass Realistic 1-d setup

-TH

E
v

AAA
VVVVVV
Bl

Figure 24: Test mass suspended by springs and dampers.

vector of the center of the enclosure (where the mass would be at equilibrium), relative to an inertial frame
of reference. Let s be the displacement vector of the mass m from its equilibrium position (so the position
vector of the mass is given by x + s. The forces acting on m are a gravitational body force mg, a restoring
force —ks due to the springs, and a dissipative force —c$ due to the dampers. Balancing forces, we find that
the absolute acceleration vector (%X + §) of the mass m satisfies

mg — ks — ¢§ = m(%X + §). (D.8)
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The forcing term m(g — %) can be viewed as exciting the displacement vector s.
ms + ¢§ + ks = m(g — X). (D.9)

Assuming that transients in s die off on a time scale which is much smaller than that of the forcing, s quickly
reaches a steady value given by

m ..

s = ?(g—x). (D.10)
The signals s; = %s - e; comprise the accelerometer output. Notice that we scale the output by the factor
k/m so that it is in units of g. Our interest is in using these signals to find the velocity % of the sensor.
As mentioned initially, it is to our advantage to work with respect to the basis {a;}. To this end, we define
G = %s - a;, which, from (D.2) and (D.3), we can see are related to the accelerometer signals s; by

¢ cos b 0 sin 8 s1
g2| = | singsinf cos¢p —singcosh| [saf . (D.11)
q3 —cos¢sind sing  cos¢cosé S3

This equation will be refered to later on in the abbreviated form g; = Fj;js;. We know that g = gE3 = gag,
so it only remains to resolve X against the {a;} basis. If x is written as v;a;, then X = v;a; + v;a;, where
a; = vay, ay = —1pay, and az = 0. It now follows from (D.10) that

U1 = —-q1 + ¢Q)Q,
by = —q2 — Y1,
V3 =—q3+g. (D12)

Integrating the signals ©; gives us the components v; of the velocity vector of the sensor with respect to the
basis {a;}. Because these are the velocity components of a motorcycle traveling over a (flat) road, we expect
that only the forward component v; will be nonzero. If desired, subsequent integration given v, and v will
give the motorcycle position. A full schematic of the process we use is given below:

‘ Sensor Qutput: w;, s; ‘

} .

[—secpsin® 0 secgcosh w1 P [+
cos @ 0 sin @ we | = ¢ ¢
| tangsind 1 —tangcosf| |ws 6 K

t

!
—cosf 0 —ginf S1 Va1) N [vq
—singsind —cos¢ singcosb Sso | + —U1¢ = |vg| — ——> Vg
| cos¢gsind —sing —cospcosd $3 g U3 | v3

) t

Flowchart C.1: The Complete Algorithm.

D.4 Error Analysis

The formulae we have developed apply to actual parameter values z. In practice, the signals we manipulate
never stay equal to the actual parameter values. To reflect this, we decompose actual parameter values x
according to

x =3+ iz, (D.13)

where Z is a prediction of what the parameter value is. The error term dz is given by z — %, where x and Z are
both well defined. The dz term includes for instance the effects of signal noise, sensor error, and calculation
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error’. Suppose we are given
y = f(z), (D.14)

which maps an actual parameter x to an actual parameter y. Replacing x with £ + dz and expanding about
# results in a decomposition of the right hand side of (D.14) into a part that contains no dz terms (given by
9 = f(&)), and a part that does, (given by dy = f(z) — f(£))%. Hence given (D.14), the decomposition (D.13)
of x results in a decomposition of y that is also in the form (D.13). If the error terms dx are sufficiently small,
then we may safely neglect all terms of §y that are higher than first order in dz. (This greatly facilitates
dealing with this part of the expansion). The expression for dy in terms of z and éx shows us the effect
(D.14) has on input error. If (D.14) is a differential equation, then the expression for dy will be a differential
equation for the error terms dy of the output of (D.14), and we will be able to track the time evolution of
dy. Note that our decomposition is easily extended to the case of vector signals and nonlinear mappings of
vector fields.

The time growth rate of error in a predicted signal § will increase with the number of successive time
integrations involved in the calculation of the signal. The most desirable type of error term is that which
does not grow with time, (i.e. that which is O(#°)). We will often refer to signals with such error terms as
primary signals.

D.4.1 Gyroscope

The gyroscope axes are aligned with a triad {h;} of unit vectors. Although ideally {h;} would coincide with
the frame-fixed orthonormal basis {e;}, in practice a misalignment will exist, which we give by e; = B;;h;.
This misalignment is time invariant, and accommodates {h;} that are not orthonormal. If an attempt is
made to obtain the components B;; experimentally, the values determined will be given by B,J = B;; — 0By,
where B;; are actual values, and §B;; are error terms. The gyroscope outputs are given by @; = wl — dw;
where w! = w-h;, and where dw; is a time varying signal which accounts for error in the gyroscope mechanism
and noise in its output. Recall that the Euler angles \; that parameterize the orientation of {e;}, evolve in
time according to )

/\i = E”w - eJ = E Bjkwk, (D15)

where the E;;’s are themselves functions of the Euler angles A;. Decomposing E;; according to (D.13), we
find that

Ai = EijBjrwi = (Eij + 6Eij)(Bji + 6Bjie) (@ + dwr)

= FE; B ikWk + 5E”Bjkwk + EU(SBkak + E,JBJk(ka + h.o.t., (D.16)

where h.o.t. are higher order terms, which we neglect. It follows that the error 8); caused by our use of
E”, B,]7 and @; is given by
6)‘1 = 6Eiijk‘:1k + Eidejkd)k + E‘ijﬁ’jk&wk. (D.17)

This set of three coupled ordinary differential equations comprises an initial value problem for the three
Euler angle errors d\;(t). We note that E” = E,J(¢ 0) so the error dynamics are affected by the system’s
trajectory®.

TWe note that different assignments of Z result in different decompositons. Consider the roll ¢ of a motorcycle moving in a
straight line. If we set ¢ equal to its nominal value of 0, the error term §¢ will make up for the fact that the actual motorcycle
roll ¢ varies slightly about 0. If we try to measure the roll with a sensor, our signal & will not be constantly 0, and may actually
be close to the actual motorcycle roll, however there will still be error §¢, because no measurement is ever perfect.

8The value § is our prediction of the output, while dy is the difference between this prediction and the actual output.

9When B;; is proper-orthogonal (in general it is not), and there are no sources of error besides sensor misalignment, error
in A;(t) can be eliminated by an appropriate choice of initial conditions {9, ¢0, 80} in the integration of (D.7), (given by the
Euler angles that parameterize Bj;;).
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D.4.2 Accelerometer

As with the gyroscope, the axes of the accelerometer are aligned with a triad {p;} of unit vectors, which
are assumed to differ from the basis {e;} according to e; = A;;p;, where the A;;’s are time invariant and
accommodate p; that are not necessarily orthogonal. If determined experimentally, the components of this
relation will be modeled by A;; = A;; — 0A;;, where A;; are actual values, and 0A;; are error terms!?. The
accelerometer output is given by §; = s¥ — ds;, where s¥ = (g — X) - p;, and where ds; is a time varying
signal which, like dw;, accounts for error in the accelerometer mechanism as well as signal noise. Recall from
(D.11) that s - e; and g; are related by

q; = Fijs cej = .F,'jAjksi, (D18)

where the Fj;’s are functions of the Euler angles and therefore can be expanded to take the form Fj; =
F;j + 0F;;. Combining Fy;, Ajx, and s}, we find that

q; = Fz’jAjksg = (Fz] + (5Fij)(fi]‘k + 5Ajk)(§k + (581‘,)
= F','jfijk§k + 6Fijfijk§k + Fij(SAjkﬁk + F‘UAjkésk + h.o.t., (D.19)

where as before, h.o.t. are discarded. The error terms dg; are consequently given by
0q; = 6Fijfijk§k + Fij(SAjk§k + F’ijfijkésk, (D.QO)
which when substituted into (D.12), result in the following error dynamics

o0 = —(5(]1 + ¢6Uz + 6¢ﬁ2,

0y = —dgz — 1z5111 — &1y,
(5’[)3 = —5Q3. (D21)

D.4.3 An Expansion of §E;; and §Fj;
Recall from (D.7) and (D.11) that E;;, and F;; are given by

[—sec¢sind 0 secpcosf
[Eij] = cosf 0 siné ,
| tangsind 1 —tan¢cosf
[ cos® 0 sin g
[Fij] = | singsinf® cos¢ —singcosh| . (D.22)
| —cos¢sinf sing  cospcosf

10The terms A;; and Bjj; characterize misalignment between the sensor axes and the basis {e;}. The nominal situation is
that the accelerometer and gyroscope axes are perfectly aligned with the {e;} basis, that is, Aij = ¢;; and Bij = 6;;. The
terms §A;; and d B;; account for perturbations from this ideal. When misalignment is small, the off-diagonal terms of §A;; and
0 B;; will be small, and the diagonal terms will be much smaller, so much so that they can effectively be set to zero. When the
misalignmnt consists of a rotation, §A4;; and dB;; will be skew-symmetric.
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Replacing \; with N+ 0\, we find that to first order, 0 E;; and JF;; are given by

[—tandsecdsind 0 tangsecdcosd
[0E;;] =5¢ 0 0 0
tan @ secd 0 —secf
[—sechcosd 0 —sechsind
+46 —giné 0 cosf ,
| tangcosd 0 tan¢psinf
[ 0 0 0
[0Fi;] =6¢ |cos¢psind —sing —cos¢pcosh
|singsind cos¢ —singcosé
—sinf 0 cosd
+60 | singcosd 0 singsinf |. (D.23)
|—cos¢pcosfd 0 —cosgpsinb

D.4.4 Motion of a Motorcycle

In the case of the motorcycle, é, 09, and U3 are primary signals with nominal values of 0. Assuming perfect
alignment of the gyroscope axes, we expand (D.17), and find that

81p = Spivs tanq@sec qAS — 66in secq@ + dws sec <;§,

8¢ = 803 + dwr

80 = —dpivs + 006 tané + dwy — dws tan qB (D.24)
The equation (D.24)3 for 86 can be ignored because it only applies when 6 is calculated by a time integration
involving the signals @;. In our case, # is a primary signal, and so §6 will be a small random signal with

no structured growth in time. Assuming perfect alignment of the accelerometer axes, we expand (D.20) and
(D.21), and find that

80y = oy — 06033 — ds1,
Sy = — 60y, — 60y
— 88y cos ¢ + ds3sin
+ O¢héa sin ¢ + S¢pds cos  — 603, sin @,
03 = —ds2 sinqAb — 053 coquﬁ
+ 66057 cos gf) + dps3 singﬁ — dP8s cos ¢3 (D.25)
As with (D.24)3, the formulae (D.25), 3 for 602 and 693 can be ignored because 02 and 93 are both primary
signals; we expect dvs and dvz to be small random signals with no structured growth in time.
D.4.5 Motorcycle Forward Velocity

We now use (D.24) and (D.25) to judge between two methods of calculating the forward velocity vy of the
motorcycle. We wish to determine whether we would be better off using the accurate process from Flowchart
C.1, or the approximate process given by

t
D1(8) = b1 (to) — / 6 (r)dr (D.26)

In using Flowchart C.1 we necessarily forgo the advantage had by treating é, U2, and U3 as primary signals.
Even though we know what these parameters will be, (for reasonable motorcycle motions they all have
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nominal values of zero), we proceed to calculate them using Flowchart C.1, as if this information was not
available!!. With this in mind, the dynamics that govern the error terms for Flowchart C.1 reduce to the
six equations in (D.24) and (D.25). The growth rates of the various error terms are easier to determine if
we impose the additional restriction that the motorcycle move forward with constant velocity in a straight
line'2. For this motion, (D.24) reduces to

8¢ = dws, 8¢ = duw, 86 = bws, (D.27)
while (D.25) reduces to

(5’1)1 = —g(50 — (581,
(5’1'}2 = 9(5(]5 - (552 - 1715(.4)3,
(57'}3 = —(583. (D28)

With the kinematics of turning and rolling out of the picture, it is easy to see that error in the Euler angles
and in 93 is O(t), while @, and 9> both have error that is O(t?). We assume that these error growth rates
also apply when the process in Flowchart C.1 is used to track general motorcycle motion over a plane (i.e.,
turning and rolling included). The reason for the O(¢?) (i.e., poor) performance of the process in tracking
vy is that the calculations for v; involve two time integrations in series. Although with perfect signals, the
process would completely account for aberrant motorcycle motions (such as pitch and lateral slip during a
turn), its performance is severely compromised by the growth characteristics of its error terms. In contrast,
the error that arises as a result of the approximate process (D.26) is given by

t T
Svy = / (Ydvy — 3360 — dsy)dt, (D.29)
0

where it can be calculated that
83 = gcos <£ + D19 sin qAS + 1¢? + 1Y sin? ¢3 (D.30)

The parameter [ is the distance from the ground to the location on the motorcycle frame of the accelerometer
sensors when the motorcycle is upright. The important thing about (D.29) is that dvs, 66, and ds; are all
small with no time structure, because é, U2, and 03 are treated as primary signals. This causes the error in
(D.29) to be O(t), which is much better than the O(#?) error resulting from the process shown in Flowchart
C.1. The performance of (D.29) suffers when dvs, 66, and ds; become excessively large, but dvs and 60 are
small for reasonable motions of the motorcycle, and §s; is small when high enough quality sensors are used.

1 The use of Flowchart C.1 would be warranted if we expected 8, v2, and v3 to have interesting non-zero values, and if we
had sensors accurate enough to track these values over a reasonable length of time.

12Under these conditions, 91 is nonzero while 92 and 93 are both zero. The accelerometer signals are given by §1 = 0, §3 = 0,
and §3 = g and the gyroscope signals by @; = 0. We will suppose that the constant orientation of the sensor array is given
by A; = 0, (that is, each of the Euler angles is zero). We also assume that the gyroscope and accelerometer axes are perfectly
aligned with the {e;} basis.
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E Algorithm Refinement

In this section we refine the basic navigation algorithm, and consider details that might arise if it is imple-
mented in real time. We use the same motorcycle configurational parameters that we used in Appendix A,
and once again we restrict our analysis to motorcycle motion over a horizontal plane. We assume that the
available signals from the motorcycle are:

(i) ws: an effectively continuous angular velocity signal from a gyroscope mounted rigidly to the motorcycle
frame (with sensing axis vertical when the motorcycle is upright).

(ii) t;: a stream of discrete time values, each corresponding to a definite angular increment & in the
rotational position of the rear wheel.

When a new time value t; registers, it is known that the motorcycle rear wheel has undergone a rotation
®. The corresponding increment in motorcycle distance (along its direction of travel) is given by d = R®,
where R is the momentary effective radius of the rear tire. This radius will depend on the roll angle ¢ in a
way that we suggest can be modeled by the changing effective radius of a rigid torus rolling on a flat surface:

R =11 + 1o cos(9), (E.1)

where 1 and 7o are respectively the major and minor radii of the torus. Using the notation At; =t; — t;_1,
the motorcycle speed at time ¢; can be approximated as

wna (L), .

2(At; 1) 4 2At; 1 At; — (At;)?
(Ati—1 + At;)At;_1 At ’

where the second formula requires that the two time values prior to t; be available. The speed value v; is
that of the contact point between the rear wheel and the ground. We assume that the wheel rolls without
slipping, and does not slide transverse to the direction the motorcycle is pointing, so that v; completely
specifies the velocity of this point. The direction the motorcycle is pointing is given by the yaw angle ¢. If
this is known, then the Cartesian coordinates of the rear wheel contact point’s position are given by

or, more accurately, as

v; = R® ( (E.3)

z =Y R®cosy, y=> R®sini. (E.4)

Because we are restricting our analysis to the motion of a motorcycle over a flat plane, the Euler angle 6
has a nominal value of 0. Although factors such as motorcycle acceleration and potholes will move 8 away
from 0, we generally expect 48 to be small with no structured growth in time. We also assume that the
motorcycle roll ¢ can be well approximated as a function of the motorcycle speed v and the gyroscope signal
ws so that d¢ is consistently small with no structured growth in time. Several formulae for ¢(v,ws) are
discussed in Appendix C of this work. The remaining Euler angle 1) must be found using (D.7), which gives
the general relationship between Euler angle rates A; and angular velocity components w;. The only part
of this relationship of interest to us is the expression for v, which, because of the zero nominal value of 6
simplifies to )

1) = w3 sec . (E.5)
This signal can be integrated to give the motorcycle yaw angle 1. An overview of our navigation scheme is
given below:

o~
.

t;

L ¢ 6| =2 R(¢)Pcos(y)) 7
vi =v;(ti, 9) | oy | v| Y= R(@)®sin(y) |-y

¢ = ¢(Ui, (.U3) ¢
w3 ) = wy sec(q)
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E.1 Error Analysis

A discussion of our method of error analysis is provided in Appendix D.4. In brief, every actual signal z
is replaced by the sum of a predicted signal £ and an error term dz. The decomposition of z results in a
decomposition of every function of z into a function of # and a function of # and dz. This second function
shows how error 0z moves through our calculations. The expression (D.24); for ¢ from Appendix D applies
directly to our current navigation system.

81h = dpdos tan d sec d — 800 sec ¢ + dws sec ¢
— sec G(Sw) — 500 + Sws). (E.6)

As was noted earlier, the increment in motorcycle distance is given by d = R®. Although ® is known very
precisely, it is reasonable to expect error in our prediction of R. The radius R is a function of rq, r2, and ¢,
each of which may be decomposed according to (D.13). Thus we have

ry =71+ 07y, Ty = Ty + 072, ¢ =+ (E.7)

We expect to have to consider dr; and drs because of variation in tire temperature and pressure, as well as
because of tire wear. Expanding our expression d for the increment in motorcycle distance, and keeping only
first order terms, we find that .

d = ®(71 + 72 cos @) + dd, (E.8)

where .
dd = ®(dry + 07y coS p — dpia Sindgp). (E.9)

The output of our navigation scheme is the position of the motorcycle in Cartesian coordinates (E.4). When
expanded according to (D.13), these expressions take the form

szécoszﬁ-ﬁ-(Sm, y22§sin'gﬁ+6y, (E.10)
where
be= (‘I’(5T1 + 01y o8 ¢ — Oy sin §) cos ) — (1 + 7 cos $)Jy sin 1&) ,
oy = z (<I>(6r1 + 61y cos ¢ — Gy sin §) sing) — (71 + Py cos $)6y cos zﬁ) . (E.11)

As mentioned previously, we assume that d¢ is consistently small with no structured growth in time. The
function ¢ = ¢(v,ws) does differ from the actual roll of the motorcycle, but we have no way of studying this
difference because we don’t know what the actual roll of the motorcycle is. For the purpose of this analysis,
we assume merely that the difference is small. The resultant treatment of ¢ as a primary signal relieves us
of having to study the propagation through é(v, ws3) of error in v and w3, and indeed relieves us of having to
study the error in v at all, because v isn’t used for anything besides the prediction of ¢. In the special case
where qAS(v, ws3) is given by sin ¢ = vws/g, the partials that express the sensitivity of ¢3(U, ws3) to the inputs v,
w3, and to the parameter g are given by
0p 1 0¢ op 1

1
=t Py 2% — _tang.
Ows  ws an g, o v an ¢, Og g an ¢

We also note the partials relating to the sensitivity of ¥, (recall that ¥ = wg sec ?).

%

6&)3

= (1 + tan ¢) sec ¢, W = “3 tan? ¢sec @, oy = 9 tan? ¢sec . (E.12)
Ov v dg 9
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E.2 Steady Motion in a Straight Line

When the motorcycle moves at constant velocity v = 0 in a straight line, q’; =0,¢ =0, =0, and for
convenience, we set 1) = 0 (i.e., motion is in the x direction). It follows that

0z =) ®(dry +6ry), and that §y = Y _ —B(F1 + ). (E.13)

The alignment error é1) evolves according to

t
5 = / Suwsdt, (E.14)
0

where we have assumed zero error initially. Replacing (E.13); with a continuous time approximation, we

find that
or = tvw, (E.15)
T1 + 79
and so it is clear that dz grows linearly with time. We expect the error term dws to be random, possibly
centered away from 0, and with no overall growth in time. If |dws| was some constant value C (that is, if
our prediction of ws was in error only by a constant offset), we would have |§1| = Ct. As it is, we assume
that no matter what the nature of dws, some constant C' exists for which |§y| < Ct. Assuming zero initial

error dy we can approximate (E.13)2 by the continuous time integral

t
Sy = / oot (E.16)
0

Making use of our assumption about the existence of C, we find that |dy(t)| < 0.50Ct2. Thus the bound
on lateral error grows quadratically with time. In order to have lateral error less than e, after traveling a
distance D at the constant speed ¥, the error term dws associated with the signal &3 must satisfy

D/
‘ / éwgdt‘ <2 (B.17)
0 D

This equation is useful because it specifies sensor quality as a function of desired navigation performance.
Of course, the limitations of this analysis must be kept in mind. When the error terms grow to significant
size, nonlinear effects which we have neglected will become important.

E.3 Motion in a circle

We now consider steady circular motion of a motorcycle at the constant speed U, and with the constant yaw
rate 1/1 We assume that qS =0, and that the motorcycle roll is well approximated by the function

~

¢ = arctan % (E.18)

It follows from (E.6) that di) is given by

50 = sec (166 + dws), (E.19)
and that dz is given by
oz = Z ®[(6ry + 2 cos  — Sy sin qg) costp — 0 (71 + 72 cos qg) sin dA}] (E.20)

We note that the symmetry of the motion makes it unnecessary to consider dy. The summation for §z can
be approximated by the following integral

t . t
ox = / % (871 + 673 cos ¢ — 8PFs sin @) cos hdt — / 06 sin Pdt
0 0

71 + T2 COS @)

_ (6r1 + dracos ¢ — 5??2 sin ¢) %sinz@ _ (125¢+6w3)1}sec<$ (Si?lb _ t00§¢> 7 (E.21)
(1 + 72 cos ¢) P 92 (U
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where for convenience we have treated the error terms dry, dr2, and §¢ as constants. (A rigorous treatment
of these terms would involve the use of bounds such as C in our study of straight line motion). Expressing

dx as Asinvﬁ + Bt cos vﬁ, we see that
|6z| = |Asine) + Btcosi| < |A| + |Blt. (E.22)

Hence in steady circular motion, the 2 and y bounds on position error grow linearly with time. Recall that
for steady straight line motion, the bound on position error in the direction of motion grows linearly with
time but that the bound on position error transverse to the direction of motion grows quadratically with
time. The relationship between maximum allowable error and sensor performance depends on the fastest
growing error bound for a standard motion, and so it is pointless to develop an expression of the form (E.17)
from our analysis of steady motion in a circle.
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