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A method of measuring the extent to which space curves encircle one another is introduced. The
method provides a family of sets which characterize encircling curves, allowing curve pairs that
engage, (and also single curves that self-engage) to be distinguished. The method is applied to the

backbone chains of protein molecules.
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Introduction.— This work is motivated by the ques-
tion of whether curves in R?® wrap around or encircle one
another. The concept of encirclement has many practi-
cal applications (e.g., vines and other biological fibers),
however there is no clear way to describe it, and no rigor-
ous method for distinguishing between the many possible
kinds of encircling curves, for instance between a curve
segment that coils around another tightly and one that
coils around another loosely. Neither the linking num-
ber of two closed curves nor the writhing number [1] of a
single closed curve help with this question. Familiar lo-
cal quantities (e.g., Serret-Frenet curvature and torsion),
and global quantities (e.g., writhe, normal injectivity ra-
dius, and global radius of curvature [2]), don’t appear to
help either. Our question relates to structural complezity
[3], which is an emerging area in the study of turbulent
flow geometries.

We find success with a new approach which features
the intersection of one space curve with triangles that
have vertices on a second space curve. These intersec-
tions correspond to a set of points in R? which is easy to
visualize and interpret. We call this set an encirclement
set, and use it to identify structural relationships be-
tween the curves. We find that the encirclement set is
also meaningful for a single curve; in this case it high-
lights structural relationships between different pieces of
the same curve. We introduce a distance function on
the collection of all encirclement sets which allows for a
systematic comparison of different space curves.

We apply our approach to the backbone chains of pro-
tein molecules, over 40,870 of which are cataloged in the
publicly accessible Protein Data Bank (PDB). The cate-
gorization of these chains (which qualify as physical knots
[4, 5]) is an active area of research [6-8]. Presently, one
of the leading strategies for organizing proteins is based
on a comparison algorithm called DALI [9], which works
with the matrix of pairwise distances between atoms in
a protein chain. We find that protein encirclement sets
give a way to distinguish between different proteins, and
so we hope to use these as an alternate basis for protein
comparison and classification.

Encirclement.— Let x and y be arclength
parametrized curves in R3, as illustrated in Figure
1. Pick a point x(s) on x, and a scale value d > 0 such
that x(s — d) and x(s + d) are defined. The points
x(s — d), x(s), and x(s + d) are the vertices of an open
triangle in R3 that we call the (d-scale) encirclement
triangle based at s. If the curve y intersects this triangle
at the point y(t), then the pair (s,t) is said to be an
element of the (d-scale) encirclement set Eq4 of x about
y. Elements of an E-set (short for encirclement set)
almost always comprise a finite collection of open curves
(called strands) in the s-t plane. We identify the sign of
an E-set element (s,t) € E4 with the sign of the scalar
triple product [x(s — d) — x(s), x(s + d) — x(s), u(t)],
where u(t) is the unit tangent vector at y(t).

FIG. 1: (In color online.) A d-scale E-set (left) shows the
encirclement of space curves (right). The point s on the E-
set x-axis corresponds to the point x(s) on the space curve
x. The triangle with vertices x(s), x(s — d), and x(s + d)
intersects the space curve y at y(t) and at y(f), and so (s,t)

and (s,t) are E-set elements. The encirclement at (s,t) is
, and the encirclement at (s,t) is negative.

The structure of two space curves is reflected in the
shape of their corresponding E-set strands. Consider a
curve x that coils many times around the line segment
y. If for all points along x the radius of curvature of x is
roughly 7 and the center of curvature of x is roughly at
the same point on y, then the 2r-scale E-set of x about



y will contain a strand that is flat. In contrast, if the
centers of curvature of x move along y (as they do for
the red stripes wrapping around the axis of a candy cane),
then the corresponding E-set strand will be tilted. If x
coils tightly around y (that is, if many coils occur over a
short length of x), then the minimum scale d at which this
coiling is reflected in the E-set of x about y will be less
than it would be if the coils in x were loose. Encirclement
is also meaningful when the curves x and y coincide (see
Figure 2); we refer to this as self encirclement.

x(s)
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FIG. 2: (In color online.) Self-encirclement of a trefoil knot.
The arc-length position of the triangle vertex x(s) corre-
sponds to the dotted vertical line crossing the E-set z-axis at
s. The E-set strands intersecting this dotted line correspond
to the two points at which x intersects the triangle.

Although an E-set conveys information about curve
structure, it does not contain enough information to re-
construct a curve. In many cases, different curves will
have the same E-sets, for instance the self E-sets for a
line segment and an arc of a circle are both empty for all
values of the encirclement scale value d.

FIG. 3: (In color online.) E-sets are sections of a surface
embedded in R®. Here we show this surface for two linked
circles. The intersection of the surface with the two planes at
left corresponds to the intersection of the triangle and curve
at right.

E-sets are d-indexed cross sections of an open (often
disconnected) surface embedded in a three dimensional
space with coordinates s, ¢, and d (see Figure 3). In-
formation about encirclement and curve shape can be
obtained from an E-set, that is, from the intersection
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of this surface with a plane perpendicular to the d-axis.
Interestingly, information about curve topology can be
obtained from the intersection T' of this surface with a
plane perpendicular to the s-axis. Holding s constant and
varying d corresponds to moving the edge of the encir-
clement triangle from x(s—d) to x(s+d) through a ruled
surface with boundary x. The sum of the signed inter-
sections of this surface with y is the linking number of x
and y. These intersections correspond to a subset of the
endpoints of strands in 7', (like an E-set, T' consists of a
finite collection of open strands).

Comparing E-Sets.— Similar E-sets and E-subsets (as
in Figure 4) correspond to similar space curve structures
and substructures. Here we quantify the difference be-
tween two E-sets; in the next section we discuss using
this quantification to organize protein molecules.
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FIG. 4: (In color online.) Similar E-subsets from two differ-
ent protein molecules; these images are magnifications of the
boxed regions in Figure 5. The similarity in these E-subsets
suggests a correspondence between the associated protein sub-
structures. The axes indicate position (in Angstroms) along
the protein backbones.

Let A and B be two E-sets and let fg : A — R map
from a € A to

Jo(a) = mf{a—b| | b e B}, (1)

This function tells how far a single element of A is from
all the elements of B. A distance function D(A, B) is
obtained by integrating (1) along the strands comprising
A and B,

DAB) = ( [ gta dr+ [ aoio) dr),

where L4 and Lp are the total lengths of the strands
in A and B respectively, and where 7 is an arc-length
parameter.
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FIG. 5: (In color online.) Self encirclement sets for three different proteins, with d = 25A. The axes indicate position (in
Angstroms) along the protein backbone. There is an especially good correspondence between the E-subsets boxed in gray,
in that the strands comprising these subsets look the same, (more formally, the distance function D applied to these subsets
returns a small number). These subsets are shown with greater magnification in Figure 4. (These protein images were generated
with KiNG Version 1.39, see http://kinemage.biochem.duke.edu/)

Imagine partitioning the strands in A and B into small
segments of equal length. To each segment in A (B), as-
sign the distance from that segment to the nearest ele-
ment in B (A). The function D(A, B) simply returns
the average of these distances. If A and B are un-
equal, then D(A,B) > 0. For instance, if A consists
of the vertical line [ 4 from (0, —1) to (0,1), and if B con-
sists of the horizontal line I from (—1,0) to (1,0), then
D(A,B) = 1/2. As A and B get closer together, e.g.,
as l4 rotates about the origin and becomes increasingly
aligned with I, D(A, B) gets smaller. If A and B are
equal then D(A, B) =0, and conversely.

We call D a distance function on E-sets because if each
of the E-sets A and B is contained in a disk in the s-¢
plane, then d,ui < D(A, B) < dmaz, where d,,;p, is the
diameter of the largest circle that can pass between the
disks, and where d,,q, is the diameter of the smallest
circle that contains the disks. Unfortunately, although
D is positive definite (and trivially symmetric), it is not
a true metric because it sometimes violates the triangle
inequality. For instance, when A, B, and C are E-sets
consisting of the open intervals on R given by (—1,0),
(—1,1), and (0, 1) respectively, D(A, B)+D(B,C) = 1/3,
and D(A,C) =1/2.

A change in the (arc-length) parameterization of a
space curve can translate and reflect its E-set in the s-t
plane. When comparing E-sets (or E-subsets), D can be
minimized over these translations and reflections. Also,
D can be evaluated separately for the positive and neg-
ative parts of two E-sets.

Protein.— Protein molecules consist of chains of
atoms coiled into compact hierarchically structured
curves in R3. Each protein molecule in the PDB is given
a unique alpha-numeric identifier, such as lenh. The pro-

teins with PDB identifiers lenh, lctf, and labo and their
self encirclement sets (with d = 25A) are illustrated in
Figure 5. The proteins with PDB identifiers lenh and
lctf both contain three a-helices, while the protein with
PDB identifier 1labo contains none. The similarities and
differences in these curve structures are reflected in their
corresponding (d = 25A) E-sets; the E-sets for these
molecules at other scales also reflect these similarities
and differences. Our hope is that this novel method of
distinguishing between different protein structures (and
substructures) will lead to a new and interesting organi-
zation of protein molecules.

Similar protein molecules usually have corresponding
secondary structures that are interconnected differently.
Finding which segments of one protein best correspond
to which segments of another involves sifting through a
huge number of possible pairings. One of the most suc-
cessful algorithms for doing this is DALI [9], which uses
a Monte Carlo approach to slowly assemble a collection
of pairings for which an overall similarity score is high.
In DALI, this similarity score is based on comparing the
distances between curve nodes. We are currently devel-
oping an algorithm like DALI, but with a similarity score
based on comparing encirclement subsets rather than dis-
tance matrices. We are considering weighted sums of E-
set comparison scores D for E-sets over a range of scale
values. Also, we anticipate having to recompute encir-
clement on larger scales as the collection of pairings gets
bigger. Once we develop our E-set based similarity score,
we will be able to organize protein molecules into trees,
clusters, and other structural families [6, 7, 9].

Although protein self encirclement sets show distinc-
tive patterns for different protein structures, protein
chains generally do not experience the kind of encir-
clement that first motivated our investigation, in which



one curve wraps many times around another. However,
this kind of encirclement does occur between a protein
chain and a smoother version of the chain (see Figure 6).
Let X be a 3 x N array with columns containing the xyz
coordinates of the atoms comprising a protein’s backbone
chain, and let A;(X) denote the k" spatial average of X,
defined by

Ap(X) =X,
(A1 (X1 = X1, [Ak1(X)]v = X]n,
[Ap(X)]i—1 + [Ap(X)]i41

[Ak+1(X)]i = 5 ;

fori=2,...,N—1. As k grows, A,(X) approaches the
straight line connecting the endpoints of X.

FIG. 6: The backbone X of the protein with PDB identifier
lenh is shown in white, and the smoother spatial average
As(X) of this curve is shown in black. The encirclement of
As(X) by a-helices in X shows up clearly in the d = 4A E-set
for these curves.

For small values of k, Ap(X) is encircled by the a-
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helices in X. For larger values of k, A (X) engages with
the higher order coiling structures in X (e.g., barrels),
and the corresponding E-sets reflect this with signature
markings. We are working on incorporating the E-sets for
a protein and its average into our E-set based similarity
score.
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